• 제목/요약/키워드: LCN

검색결과 20건 처리시간 0.02초

Acute Phase Protein Lipocalin-2 Is Associated with Formalin-induced Nociception and Pathological Pain

  • Jha, Mithilesh Kumar;Jeon, Sangmin;Jin, Myungwon;Lee, Won-Ha;Suk, Kyoungho
    • IMMUNE NETWORK
    • /
    • 제13권6호
    • /
    • pp.289-294
    • /
    • 2013
  • Lipocalin-2 (LCN2) is an acute-phase protein induced by injury, infection, or other inflammatory stimuli. LCN2 binds small hydrophobic ligands and interacts with cell surface receptor to regulate diverse cellular processes. The role of LCN2 as a chemokine inducer in the central nervous system (CNS) has been previously reported. Based on the previous participation of LCN2 in neuroinflammation, we investigated the role of LCN2 in formalin-induced nociception and pathological pain. Formalin-induced nociceptive behaviors (licking/biting) and spinal microglial activation were significantly reduced in the second or late phase of the formalin test in Lcn2 knockout mice. Likewise, antibody-mediated neutralization of spinal LCN2 attenuated the mechanical hypersensitivity induced by peripheral nerve injury in mice. Taken together, our results suggest that LCN2 can be therapeutically targeted, presumably for both prevention and reversal of acute inflammatory pain as well as pathological pain.

Modulation of Glial and Neuronal Migration by Lipocalin-2 in Zebrafish

  • Kim, Ho;Lee, Shin-Rye;Park, Hae-Chul;Lee, Won-Ha;Lee, Myung-Shik;Suk, Kyoung-Ho
    • IMMUNE NETWORK
    • /
    • 제11권6호
    • /
    • pp.342-347
    • /
    • 2011
  • Background: Glial cells are involved in immune and inflammatory responses in the central nervous system (CNS). Glial cells such as microglia and astrocytes also provide structural and functional support for neurons. Migration and morphological changes of CNS cells are associated with their physiological as well as pathological functions. The secreted protein lipocalin-2 (LCN2) has been previously implicated in regulation of diverse cellular processes of glia and neurons, including cell migration and morphology. Methods: Here, we employed a zebrafish model to analyze the role of LCN2 in CNS cell migration and morphology in vivo. In the first part of this study, we examined the indirect effect of LCN2 on cell migration and morphology of microglia, astrocytes, and neurons cultured in vitro. Results: Conditioned media collected from LCN2-treated astrocytes augmented migration of glia and neurons in the Boyden chamber assay. The conditioned media also increased the number of neuronal processes. Next, in order to further understand the role of LCN2 in the CNS in vivo, LCN2 was ectopically expressed in the zebrafish spinal cord. Expression of exogenous LCN2 modulated neuronal cell migration in the spinal cord of zebrafish embryos, supporting the role of LCN2 as a cell migration regulator in the CNS. Conclusion: Thus, LCN2 proteins secreted under diverse conditions may play an important role in CNS immune and inflammatory responses by controlling cell migration and morphology.

LCN2 Promoter Methylation Status as Novel Predictive Marker for Microvessel Density and Aggressive Tumor Phenotype in Breast Cancer Patients

  • Meka, Phanni bhushann;Jarjapu, Sarika;Nanchari, Santhoshi Rani;Vishwakarma, Sandeep Kumar;Edathara, Prajitha Mohandas;Gorre, Manjula;Cingeetham, Anuradha;Vuree, Sugunakar;Annamaneni, Sandhya;Dunna, Nageswara Rao;Mukta, Srinivasulu;Triveni, B;Satti, Vishnupriya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권12호
    • /
    • pp.4965-4969
    • /
    • 2015
  • LCN2 (Lipocalin 2) is a 25 KD secreted acute phase protein, reported to be a novel regulator of angiogenesis in breast cancer. Up regulation of LCN2 had been observed in multiple cancers including breast cancer, pancreatic cancer and ovarian cancer. However, the role of LCN2 promoter methylation in the formation of microvessels is poorly understood. The aim of this study was to analyze the association of LCN 2 promoter methylation with microvessel formation and tumor cell proliferation in breast cancer patients. The LCN2 promoter methylation status was studied in 64 breast cancer tumors by methylation specific PCR (MSP). Evaluation of microvessel density (MVD) and Ki67 cell proliferation index was achieved by immunohistochemical staining using CD34 and MIB-1 antibodies, respectively. LCN2 promoter unmethylation status was observed in 43 (67.2%) of breast cancer patients whereas LCN2 methylation status was seen in 21 (32.8%). Further, LCN2 promoter unmethylation status was associated with aggressive tumor phenotype and elevated mean MVD in breast cancer patients.

Characteristics of LaCo1-xNixO3-δ Coated on Ni/YSZ Anode using CH4 Fuel in Solid Oxide Fuel Cells

  • Kim, Jun Ho;Jang, Geun Young;Yun, Jeong Woo
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권4호
    • /
    • pp.336-345
    • /
    • 2020
  • Nickel-doped lanthanum cobalt oxide (LaCo1-xNixO3-δ, LCN) was investigated as an alternative anode material for solid oxide fuel cells. To improve its catalytic activity for steam methane reforming (SMR) reaction, Ni2+ was substituted into Co3+ lattice in LaCoO3. LCN anode, synthesized using the Pechini method, reacts with yttria-stabilized zirconia (YSZ) electrolyte at high temperatures to form an electrochemically inactive phase such as La2Zr2O7. To minimize the interlayer by-products, the LCN was coated via a double-tape casting method on the Ni/YSZ anode as a catalytic functional layer. By increasing the Ni doping amount, oxygen vacancies in the LCN increased and the cell performance improved. CH4 fuel decomposed to H2 and CO via SMR reaction in the LCN functional layer. Hence, the LCN-coated Ni/YSZ anode exhibited better cell performance than the Ni/YSZ anode under H2 and CH4 fuels. LCN with 12 mol% of Ni (LCN12)-modified Ni/YSZ anode showed excellent long-term stability under H2 and CH4 conditions.

총기 흔적흔에서의 low copy number(LCN) DNA 검출에 관한 연구 (Research on the detection of LCN DNA from traces on firearms)

  • 전충현;박성우
    • 분석과학
    • /
    • 제24권1호
    • /
    • pp.51-59
    • /
    • 2011
  • 유전자 감식은 다양한 범죄현장에서 발견되는 생체시료의 분석을 통해 신원을 식별하는 중요한 법과학적 수사과정으로 자리 잡았다. 최근에는 범인이 사용했던 펜, 뺑소니 차량에서의 핸들, 기어, 각종 버튼스위치 등에 남겨져 있는 touch evidence-type sample로 알려져 있는 low copy number (LCN) DNA에서의 A-STR분석을 위해 의뢰되는 감정물들이 증가하는 추세에 있다. 본 연구에서는 총기의 뭉개진 지문 등에 남겨져 있는 touch evidence-type의 LCN DNA를 추출하고 유전자형의 분석 성공률을 확인하고 자 하였다. 4종류의 총기(M16, K1A, COLT 45 권총, M29 리볼버)를 각각 격발한 후 총기별로 4곳의 부위에서 시료를 채취한 다음 LCN DNA의 추출을 위해 Microkit과 $Prepfiler^{TM}$ 등 2종류의 시약을 이용하여 DNA 검출량과 유전자형 분석 성공률을 비교 분석하였다. 분석결과 $Prepfiler^{TM}$가 Microkit에 비해 평균 1.7배 DNA검출량이 많았으며, 유전자형 분석 성공률에 있어서도 Microkit은 0%인데 비해 $Prepfiler^{TM}$에서는 평균 24.9%의 성공률을 보였으며, K1A의 손잡이 부위에서 50.6%의 성공률을 나타냈다.

Evaluation of DNA Extraction Methods from Low Copy Number (LCN) DNA Samples for Forensic DNA Typing

  • Eom, Yong-Bin
    • 대한의생명과학회지
    • /
    • 제15권3호
    • /
    • pp.229-232
    • /
    • 2009
  • DNA isolation for PCR-based short tandem repeat (STR) analysis is essential to recover high yields of amplifiable DNA from low copy number (LCN) DNA samples. There are different methods developed for DNA extraction from the small bloodstain and gloves, commonly found at crime scenes. In order to obtain STR profiles from LCN DNA samples, DNA extraction protocols, namely the automated $iPrep^{TM}$ $ChargeSwitch^{(R)}$ method, the automated $QIAcube^{TM}$ method, the automated $Maxwell^{(R)}$ 16 DNA $IQ^{TM}$ Resin method, and the manual $QIAamp^{(R)}$ DNA Micro Kit method, were evaluated. Extracted DNA was quantified by the $Quantifiler^{TM}$ Human DNA Quantification Kit and DNA profiled by $AmpFISTR^{(R)}$ $Identifiler^{(R)}$ Kit. Results were compared based on the amount of DNA obtained and the completeness of the STR profiles produced. The automated $iPrep^{TM}$ $ChargeSwitch^{(R)}$ and $QIAcube^{TM}$ methoas produced reproducible DNA of sufficient quantity and quality trom the dried blood spot. This two automated methods showed a quantity and quality comparable to those of the forensic manual standard protocols normally used in our laboratory. In our hands, the automated DNA extraction method is another obvious choice when the forensic case sample available is bloodstain. The findings of this study indicate that the manual simple modified $QIAamp^{(R)}$ DNA Micro Kit method is best method to recover high yields of amplifiable DNA from the numerous potential sources of LCN DNA samples.

  • PDF

Photoresponsive Behavior of Liquid-Crystalline Networks

  • Yu, Yanlei;Ikeda, Tomiki;Nakano, Makoto
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.34-37
    • /
    • 2002
  • Freestanding azobenzene-containing liquidcrystalline network (LCN) films. with macroscopic uniaxial molecular alignment were prepared by insitu photopolymerization. By polarizing microscopy, fiber-like structures aligned in one direction were observed. Furthermore, with a confocal laser scanning microscope (CLSM), it was confirmed that the fiber-like structures were formed even in the bulk of the LCNs. Upon UV light irradiation to cause trans-cis photoisomerization of the azobenzene molecules, the LCNfilms underwent a significant and anisotropic bending toward the irradiation direction of UV light. When the bent LCNfilms were exposed to Vis light, unbending of the LCN films immediately took place and the initial flat LCN films were restored. This bending and unbending behavior of the LCN films could be repeated just by changing the wavelength of the irradiation light. It was suggested that the bending was induced by an absorption gradient which produced a volume difference between the front surface area and the bulk of the network films.

  • PDF

Effect of NUCKS-1 Overexpression on Cytokine Profiling in Obese Women with Breast Cancer

  • Soliman, Nema Ali;Zineldeen, Doaa Hussein;El-Khadrawy, Osama Helmy
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권2호
    • /
    • pp.837-845
    • /
    • 2014
  • Background: Overweight and obesity are recognized as major drivers of cancers including breast cancer. Several cytokines, including interleukin-6 (IL-6), IL-10 and lipocalin 2 (LCN2), as well as dysregulated cell cycle proteins are implicated in breast carcinogenesis. The nuclear, casein kinase and cyclin-dependent kinase substrate-1 (NUCKS-1), is a nuclear DNA-binding protein that has been implicated in several human cancers, including breast cancer. Objectives: The present study was conducted to evaluate NUCKS-1 mRNA expression in breast tissue from obese patients with and without breast cancer and lean controls. NUCKS-1 expression was correlated to cytokine profiles as prognostic and monitoring tools for breast cancer, providing a molecular basis for a causal link between obesity and risk. Materials and Methods: This study included 39 females with breast cancer (G III) that was furtherly subdivided into two subgroups according to cancer grading (G IIIa and G IIIb) and 10 control obese females (G II) in addition to 10 age-matched healthy lean controls (G I). NUCKS-1 expression was studied in breast tissue biopsies by means of real-time PCR (RT-PCR). Serum cytokine profiles were determined by immunoassay. Lipid profiles and glycemic status as well as anthropometric measures were also recorded for all participants. Results: IL-6, IL-12 and LCN2 were significantly higher in control obese and breast cancer group than their relevant lean controls (p<0.05), while NUCKS-1 mRNA expression was significantly higher in the breast cancer group compared to the other groups (p<0.05). Significant higher levels of IL-6, IL-12, and LCN2 as well as NUCKS-1 mRNA levels were reported in G IIIb than G IIIa, and positively correlated with obesity markers in all obese patients. Conclusions: Evaluation of cytokine levels as well as related gene expression may provide a new tool for understanding interactions for three axes of carcinogenesis, innate immunity, inflammation and cell cycling, and hope for new strategies of management.

금속수소화물 기반 수소저장시스템의 열관리 인자 조사 (Investigation of Thermal Management Parameters of Metal Hydride Based Hydrogen Storage System)

  • 박주식;김종원;배기광;정성욱;강경수
    • 한국수소및신에너지학회논문집
    • /
    • 제29권3호
    • /
    • pp.251-259
    • /
    • 2018
  • Metal hydride based hydrogen storage under moderate temperature and pressure gives the safety advantage over the gas and liquid storage methods. Still solid-state hydrogen storage including metal hydride is below the DOE target level for automotive applications, but it can be adapted to stationary or miliary application reasonably. In order to develop a modular solid state hydrogen storage system that can be applied to a distributed power supply system composed of renewable energy - water electrolysis - fuel cell, the heat transfer and hydrogen storage characteristics of the metal hydride necessary for the module system design were investigated using AB5 type metal hydride, LCN2 ($La_{0.9}Ce_{0.1}Ni_5$). The planetary high energy mill (PHEM) treatment of LCN2 confirmed the initial hydrogen storage activation and hydrogen storage capacity through surface modification of LCN2 material. Expanded natural graphite (ENG) addition to LCN2, and compression molding at 500 atm improved the thermal conductivity of the solid hydrogen storage material.

Effects of caloric restriction on the expression of lipocalin-2 and its receptor in the brown adipose tissue of high-fat diet-fed mice

  • Park, Kyung-Ah;Jin, Zhen;An, Hyeong Seok;Lee, Jong Youl;Jeong, Eun Ae;Choi, Eun Bee;Kim, Kyung Eun;Shin, Hyun Joo;Lee, Jung Eun;Roh, Gu Seob
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권5호
    • /
    • pp.335-344
    • /
    • 2019
  • Obesity causes inflammation and impairs thermogenic functions in brown adipose tissue (BAT). The adipokine lipocalin 2 (LCN2) has been implicated in inflammation and obesity. Herein, we investigated the protective effects of caloric restriction (CR) on LCN2-mediated inflammation and oxidative stress in the BAT of high-fat diet (HFD)-fed mice. Mice were fed a HFD for 20 weeks and then either continued on the HFD or subjected to CR for the next 12 weeks. CR led to the browning of the white fat-like phenotype in HFD-fed mice. Increased expressions of LCN2 and its receptor in the BAT of HFD-fed mice were significantly attenuated by CR. Additionally, HFD+CR-fed mice had fewer neutrophils and macrophages expressing LCN2 and iron-positive cells than HFD-fed mice. Further, oxidative stress and mitochondrial fission induced by a HFD were also significantly attenuated by CR. Our findings indicate that the protective effects of CR on inflammation and oxidative stress in the BAT of obese mice may be associated with regulation of LCN2.