• Title/Summary/Keyword: LCD backlight system

Search Result 88, Processing Time 0.043 seconds

The optical character analysis of the direct typed BLU for LCD TV

  • Yoon, D.K.;Park, D.S.;Han, J.M.;Oh, Y.S.;Bae, K.W.;Kim, Y.H.;Lim, Y.J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1058-1061
    • /
    • 2004
  • Recently, According to companies of TFT LCD are making large sized products more and more. In the vortex of Products with a monitor and LCD TV is applied in a technique of a high viewing angle(FFS, IPS, VA). Also, as a high luminance, high speed response time, high degree of a color purity, and so on are continuing to develop a high performance, it is necessary to improve a specific character of high luminance that apply to LCD TV as a LCD BLU. Because a LCD panel for TV usually has a lower resolution that compare to a monitor, the structure of present backlight system can't put out its power even though it has a merit in transmission. Therefore, the examination of improvement about the high luminance direct typed BLU for LCD TV that presupposes several uses of CCFL(Cold Cathode Fluorescent Lamp) or EEFL(External Electrode Fluorescent Lamp)is actively being progressed. Although it is necessary to increase the number of lamps for applying high performance by the direct type, in this case, because we can design the character of luminance for adoption of high performance. We can satisfy with a level of luminance for LCD TV. Accordingly, we analyzed a change of the number of CCFL, mechanical and optical character to produce the direct typed backlight in 32inches spec. Consequently, we achieved luminance of 6597nit,which was including polarization film, and secured the standard for LCD TV.

  • PDF

A Novel Module Control Technology for High-Power LED Backlight

  • Su, Chun-Wei;Chiang, Chin-I;Li, Tzung-Yang;Tsou, Chien-Lung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1326-1329
    • /
    • 2009
  • In large-area LCD displays, we have developed two new control technologies for high-power LED backlight. The Novel control technology called scanning control and local gray control. In addition, a conceptual display system power management was developed. We have implemented high power-LED module driving system which can achieve power saving and cost down. Finally, we designed LED light-bar module of the side type as a backlight source. It not only achieved light & thin but also reduced the quantity of LEDs.

  • PDF

A Study of Efficient LCD Brightness Control Technique in the Mobile Embedded System (모바일 제품의 효율적인 LCD 밝기 조절 기법에 관한 연구)

  • Kim, Jong-Dae;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.129-137
    • /
    • 2010
  • There are a lot of multimedia functions getting included in mobile devices recently, not only simple audio but visual functions as well, such as video playing, game and web browsing. Such the visual multimedia functions brought the strong requirement for much bigger LCD Display and high resolution. And the brightness of LCD is also one of major requirements and it is required to be more bright. However, LCD brightness is limited to increase because of power consumption. It occupies nearly 30% of the whole system power. This thesis suggests an effective and simple method of adjusting the LCD backlight brightness, considering a characteristic of battery and user pattern.

A Study on the Efficient Technique of LCD Brightness Control in the Mobile System (모바일 제품의 효율적인 LCD 밝기 조절 기법에 관한 연구)

  • Kim, JongDae;Park, YoungJoon;Kim, YoungKil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.451-454
    • /
    • 2009
  • There are a lot of multimedia functions getting included in mobile devices recently, not only simple audio but visual functions as well, such as video playing, game and web browsing. Such the visual multimedia functions brought the strong requirement for much bigger LCD Display and high resolution. And the brightness of LCD is also one of major requirements and it is required to be more bright However, LCD brightness is limited to increase because of power consumption. It occupies nearly 30% of the whole system power. This thesis suggests an effective and simple method of adjusting the LCD backlight brightness, considering a characteristic of battery and user pattern.

  • PDF

A Study on the Development of Backlight Surface Defect Inspection System using Computer Vision (컴퓨터비젼을 이용한 백라이트 표면결함 검사시스템 개발에 관한 연구)

  • Cho, Young-Chang;Choi, Byung-Jin;Yoon, Jeong-Oh
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.3
    • /
    • pp.116-123
    • /
    • 2007
  • Despite the number of backlight manufacturer is increased as the market of flat panel display equipments and related development devices is enlarged, the inspection based on the human eye is still used in many backlight production lines. The defects such as particle, spot and scratch on the light emitting surface of the backlight prevent the LCD device from displaying the colors correctly. From that manual inspection it is difficult to maintain the quality of backlight consistently because the accuracy and the speed of the inspection may change with the physical condition of the operater. In this paper we studied on the development of automatic backlight surface defect inspection system. For this, we made up of the computer vision system and we developed the main program with various user interfaces to operate the inspection system effectively. And we developed the image processing module to extract the defect information. Furthermore, we presented the labeling process to reconstruct defect regions using the labeling table and the defect index. From the experimental results, we found that our system can detect all defect regions identified from human eye and it is sufficient to substitute for the conventional surface inspection.

  • PDF

An Optimal Design for Power Consumption of 2.2"~2.6" Display System of Mobile Phone

  • Cheng, Hui-Wen;Huang, Hsuan-Ming;Li, Yiming;Tsai, Tseng-Chien;Chen, Hung-Yu;Huang, Kuen-Yu;Hsieh, Tsau-Hua
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.968-971
    • /
    • 2009
  • TFT-LCD display system is nowadays one of power-hungry components in portable products; technique of power reduction is thus essential for production of mobile phone. In this work, we minimize the display power, using computationally intelligent statistical methodology. Compared with a conventional design, 68.474% reductions on the current consumption could be obtained for a 2.2-inch of TFT-LCD display system of mobile phone. The total power consumption of the display system consisting of the backlight system and current consumption of display panel is thus successfully reduced form 68.305mW to 64.06mW (about 6.215% reductions).

  • PDF

Electricla Properties of Xe Plasma Flat Lamp (Xe 플라즈마 평판 램프의 전기적 특성)

  • Choi, Yong-Sung;Cho, Jae-Cheol;Hong, Kyung-Jin;Lee, Woo-Sun;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.35-38
    • /
    • 2006
  • As a display becomes large recently, Acquisition of high luminance and Luminance uniformity is becoming difficult in the existing CCFL or EEFL backlight system. So, study for a performance enhancement has enforced. but lamp development of flat type is asked for high luminance and a luminance uniformity security in of LCD and area anger trend ultimately. In this paper, we changed a tip shape of an electrode for production by the most suitable LCD backlight surface light source, and confirmed discharge characteristic along discharge gas pressure and voltage, and confirmed electric field distribution and discharge energy characteristic through a Maxwell 2D simulation. Therefore the discharge firing voltage characteristic showed a low characteristic than a rectangular type and round type in case of electrode which used tip of a triangle type, and displayed a discharge electric current as a same voltage was low.

  • PDF

Colored-LCD Type Train Destination Indicator System for Visibility Improvement (승객서비스 향상을 위한 새로운 열차행선안내장치의 개발)

  • Hwang Jong-Gyu;Lee Jae-Ho;Yoon Yong-Ki;Shin Duc-Ko;Jo Hyun-Jeong
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.4 s.35
    • /
    • pp.504-509
    • /
    • 2006
  • Currently, most of TDIS(Train Destination Indicator System) is operated colored-LED type equipment in Korea. This current LED type TDIS equipment has not graceful display and causes passenger's fatigues because of the LED module inherent characteristics as a display light source, high power consumption, high operating and maintenance costs, and et al. To address these several, we are developed new colored-LCD type TDIS equipment. According to our developed new TDIS equipment, we can achieve high resolution and graceful color stone of information display. Thus high graded service are able to provide to passengers. In addition, LCD module decreases power consumption, and it can be used permanently by changing only backlight in comparison with conventional equipment. Therefore we can decrease the maintenance cost and extend durability-period of TDIS equipment using new equipment.

Backlight for TFT LCD

  • Jeong, Jin-Man;Eom, Deok-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.201-202
    • /
    • 2000
  • This seminar outlines the technology involved in the backlighting of TFT LCDs. It covers basic terminology, lighting requirements, lamp types and optical techniques. These will be reviewed and compared. Optical factors will be covered and related to space constraints. The spectral requirements, luminance levels, system efficacy, power requirements, lamp temperature, as well as other parameters affecting system performance will be discussed.

  • PDF

Chromatic and Optical Characteristics of LCD TV

  • Pan, Po-Chuan;Koo, Horng-Show
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1795-1800
    • /
    • 2006
  • HDTV will be the future TV system. LCD TV, accompanying with the progress of HDTV, rapidly grows up these years. Beside, several technologies and fabricating techniques have greatly enhanced resulting high quality display is easy to achieve. This paper will discuss video decoder, color filter, and backlight which is to know their functions, operating methods, and the chromatic and optical characteristics.

  • PDF