• Title/Summary/Keyword: LCC-LCA

Search Result 17, Processing Time 0.018 seconds

Establishment of Life Cycle Management(LCM) System for Water Supply and Sewerage Systems (상하수도시설에 대한 전과정관리(LCM)시스템 구축방안 연구)

  • Park, Ji-Hyoung;Hwang, Young-Woo;Kim, Young-Woon;Park, Kwang-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.303-312
    • /
    • 2012
  • Water supply and sewerage systems are the large-scale urban infrastructure ejecting large amount of environmental load over the life-cycle. Therefore, it is important not only to optimize in the aspect of economical superiority and process efficiency but also to consider earth scale environmental impact. This study aimed to suggest the establishment of life cycle management(LCM) system as an integrated management solution in urban water supply and sewerage systems. As a result, the methodology for LCM system consisting of life cycle assessment(LCA), life cycle cost(LCC), life cycle $CO_{2}(LCCO_{2})$ and life cycle energy(LCE) was developed. Also, several case studies using the latest statistics data of water supply and sewerage systems were carried out to investigate the field applicability of LCM.

A Study on the case study LCA Analysis for the Education and Research Building of S University (S대학교 교육연구동 LCA분석 사례 연구)

  • Bum Sung-Woo;Kim Min-Hyun;Park Tae-Keun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.465-468
    • /
    • 2003
  • It has taken a growing interest about environmental problems such as global warming and water pollution. Because of intensified environmental problems, it would be going on the research about environmental preservation and harmful factor reduction. Also, it makes ISO to show the quantitative data about LCA analysis. The research of LCA method in the domestic construction industry has advanced stealing from a national point of view. In this study, it would be possible to confirm the feasibility of a plan by LCA analysis. Moreover, the result of life cycle cost which deliberate the influence cost of environment in the steps of material production, construction, maintenance, and disposal has made to be 74,819,560,776 won in a plan and 78,979.469,602won in alternative. That is, it would analysis for a plan to reduce 4,159,908,826 won for alternative.

  • PDF

Practical Experiences with Corrosion Protection of Water Intake Gates in Mekong River

  • Phong, Truong Hong;Tru, Nguyen Nhi;Han, Le Quang
    • Corrosion Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.328-331
    • /
    • 2008
  • Corrosion behaviour of water intake gate steel structures with different protective measures was investigated. Five material alternatives were taken for investigation, including: imported and recycled stainless steel, carbon steel with hot zinc spraying, painting and composite coatings. Results of corrosion rate for carbon steel, SUS 304, hot zinc spray coats in three water systems of Mekong river basin (saline, blackish and fresh) were also presented. Corrosion rate of carbon steel decreased with decreasing salinity in the investigated water environments. Meanwhile, these values for zinc coated steel, behaved by another way. Environmental data for these systems were filed and discussed in relation with corrosion characteristics. Method of Life Cycle Assessment (LCA) was applied in materials selection for water intake gate construction. From point of Life Cycle Cost (LCA) the following ranking was obtained: Zinc sprayed steel < Recycled stainless steel < Composite coated steel < Painting steel < SUS 304 From investigated results, hot zinc spray coating has been applied as protective measure for steel structures of water intake systems in Mekong river basin.

An Eco-efficiency Analysis of Nd Permanent Magnet Recycling (Nd 영구자석(永久磁石) 재활용(再活用)의 Eco-efficiency 분석(分析))

  • Kim, Byung Ju;Kim, Hyoungseok;Yoon, Ho Sung;Cho, Bong Gyoo;Hur, Tak
    • Resources Recycling
    • /
    • v.22 no.4
    • /
    • pp.55-61
    • /
    • 2013
  • In this study, eco efficiency analysis is performed to analyze Neodymium (Nd) containing permanent magnet recycling process. Life cycle assessment (LCA) and life cycle costing (LCC) are used to apply eco efficiency analysis. In the environmental aspects, global warming potential (GWP) of 1kg permanent magnet is 1.25E + 00 kg $CO_2$ eq. and abiotic resource depletion potential (ADP) is 1.10E - 02 Sb eq. This recycling process costs about 2130 KWR. Environmental efficiency of GWP is at 6.43 and ADP is at 5.32 when compared with vigin metal. Economic efficiency is at 6.74. This study confirms that Nd containing permanent magnet recycling process is sustainable system because of environmental and economical improvement.

Identification of relevant differential genes to the divergent development of pectoral muscle in ducks by transcriptomic analysis

  • Fan Li;Zongliang He;Yinglin Lu;Jing Zhou;Heng Cao;Xingyu Zhang;Hongjie Ji;Kunpeng Lv;Debing Yu;Minli Yu
    • Animal Bioscience
    • /
    • v.37 no.8
    • /
    • pp.1345-1354
    • /
    • 2024
  • Objective: The objective of this study was to identify candidate genes that play important roles in skeletal muscle development in ducks. Methods: In this study, we investigated the transcriptional sequencing of embryonic pectoral muscles from two specialized lines: Liancheng white ducks (female) and Cherry valley ducks (male) hybrid Line A (LCA) and Line C (LCC) ducks. In addition, prediction of target genes for the differentially expressed mRNAs was conducted and the enriched gene ontology (GO) terms and Kyoto encyclopedia of genes and genomes signaling pathways were further analyzed. Finally, a protein-to-protein interaction network was analyzed by using the target genes to gain insights into their potential functional association. Results: A total of 1,428 differentially expressed genes (DEGs) with 762 being up-regulated genes and 666 being down-regulated genes in pectoral muscle of LCA and LCC ducks identified by RNA-seq (p<0.05). Meanwhile, 23 GO terms in the down-regulated genes and 75 GO terms in up-regulated genes were significantly enriched (p<0.05). Furthermore, the top 5 most enriched pathways were ECM-receptor interaction, fatty acid degradation, pyruvate degradation, PPAR signaling pathway, and glycolysis/gluconeogenesis. Finally, the candidate genes including integrin b3 (Itgb3), pyruvate kinase M1/2 (Pkm), insulin-like growth factor 1 (Igf1), glucose-6-phosphate isomerase (Gpi), GABA type A receptor-associated protein-like 1 (Gabarapl1), and thyroid hormone receptor beta (Thrb) showed the most expression difference, and then were selected to verification by quantitative real-time polymerase chain reaction (qRT-PCR). The result of qRT-PCR was consistent with that of transcriptome sequencing. Conclusion: This study provided information of molecular mechanisms underlying the developmental differences in skeletal muscles between specialized duck lines.

Evaluation of Environmental and Economic Impacts of Advanced Wastewater Treatment Plants with Life Cycle Assessment (고도 하수처리장의 전과정평가에 따른 환경성 및 경제성 평가)

  • Pyo, SeHee;Kim, MinJeong;Lee, SeungChul;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.503-515
    • /
    • 2014
  • A lot of existing wastewater treatment plants (WWTPs) are rebuilt or retrofitted for advanced wastewater treatment processes to cope with reinforced effluent criteria of nitrogen and phosphorous. Moreover, how to treat the wasted sludge from WWTPs has been also issued since the discharge of the wasted sludge into ocean is impossible from 2011 due to the London Convention 97 protocol. These trend changes of WWTPs get a motivation to assess environmental and economic impacts from the construction stage to the waste stage in WWTPs. Therefore, this study focuses on evaluation of environmental and economic impacts of the advanced wastewater treatment processes and waste sludge treatment process by using life cycle assessment. Four advanced wastewater treatment processes of Anaerobic/Anoxic/Oxic ($A_2O$), 5 stages-Bamard Denitrification Phosphate (Bardenpho), Virginia Initiative Plant (VIP), and Modified University of Cape Town (MUCT) are chosen to compare the conventional activated sludge (CAS) and three waste sludge treatment methods of land fill, incineration, and composting are used. To evaluate environmental and economic impacts of each advanced wastewater treatment processes, life cycle assessment (LCA) and life cycle cost (LCC) are conducted based on International organization for standardization (ISO) guidelines. The results clearly represent that the $A_2O$ process with composting shows 52% reduction in the environmental impact than the CAS process with landfill. On the other hand, the MUCT process with composting is able to save 62% of the life cycle cost comparing with the CAS process with landfill. This result suggested the qualitative and quantitative criteria for evaluating eco-environmental and economic technologies of advanced treatment processes and also sludge treatment method, where their main influence factors on environmental and economic impacts are analyzed, respectively. The proposed method could be useful for selecting the most efficient and eco-friendly wastewater treatment process and sludge treatment method when retrofitting the existing WWTPs to advanced treatments.