• Title/Summary/Keyword: LCC Analysis

Search Result 375, Processing Time 0.024 seconds

Life-Cycle Cost Analysis of Ballast Water Treatment System (LCC 분석에 의한 Ballast Water 처리 시스템의 경제성 평가)

  • Kim, Je-Eun;Kim, Soo-Young;Kim, Hyung-Man;Seo, Guan-Hui
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.6 s.144
    • /
    • pp.673-678
    • /
    • 2005
  • IMO adopted ' International Convention for The Control and Management of Ships' Ballast Water and Sediments ' on February 13th 2004. According to this convention, a ballast water treatment system should be installed in all ships obligatorily up to a standard date. When the system is installed, economic propriety should be considered. The economic propriety analysis examines the profit of a relevant project which can be presented by a equation, (Profit) = (income) - (expense) - (tax). However, the ballast water system is not for the profit during the life cycle but for the satisfaction of the regulation. Therefore, the expense should be minimum against the profit. This study presents the LCC(Life-Cycle Cost) analysis for economic evaluation of several ballast water system of foreign products.

Variation Range for Maintenance Costs of Education Facilities Based on LCC Analysis (LCC기법을 통한 교육시설물의 유지관리비 변동범위 분석)

  • Kim, Yong-Su;Kang, Hyun-Wook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.11 no.3
    • /
    • pp.72-79
    • /
    • 2010
  • The purpose of this study is to analysis variation of range estimation for maintenance costs of education facilities based on LCC. The adapted research method selected three education facilities in Gyeonggi-Do region. On the basis of actual maintenance costs and analyzed estimation maintenance costs are compared for analyzing standard deviation and coefficient of variation. The research of this study are as follows: 1) The average actual maintenance costs for 1,317million won and each part of average ratio exterior 19%, interior 28%, electricity & fire fighting 22%, water supply & healthy 18%, heating & water supply 13%. 2)The average analysis maintenance costs for 1,920million won and each part of average ratio exterior 20%, interior 25%, electricity & fire fighting 22%, water supply & healthy 20%, heating &water supply 13%.. 3) The analysis variation of ranges for average costs 1,619million won for minimum costs 1,409million, maximum costs 1,813million won.

Economic Analysis of a Residential Ground-Source Heat Pump System (단독주택용 지열원 열펌프 시스템의 경제성 분석)

  • Sohn, Byong-Hu;Kang, Shin-Hyung;Lim, Hyo-Jae
    • New & Renewable Energy
    • /
    • v.3 no.4
    • /
    • pp.31-37
    • /
    • 2007
  • Because of their low operating and maintaining costs, ground-source heat pump(GSHP) systems are an increasingly popular choice for providing heating, cooling and water heating to public and commercial buildings. Despite these advantages and the growing awareness, GSHP systems to residential sectors have not been adopted in Korea until recently. A feasibility study of a residential GSHP system was therefore conducted using the traditional life cycle cost(LCC) analysis within the current electricity price framework and potential scenarios of that framework. As a result, when the current residential electricity costs for running the GSHP system are applied, the GSHP system has weak competitiveness to conventional HV AC systems considered. However, when the operating costs are calculated in the modified price frameworks of electricity, the residential GSHP system has the lower LCC than the existing cooling and heating equipments. The calculation results also show that the residential GSHP system has lower annual prime energy consumption and total pollutant emissions than the alternative HVAC systems considered in this work.

  • PDF

Economic Analysis of a Residential Ground-Source Heat Pump System (단독주택용 지열원 열펌프 시스템 경제성 분석)

  • Sohn, Byong-Hu;Kang, Shin-Hyung;Lim, Hyo-Jae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.515-518
    • /
    • 2007
  • Because of their low operating and maintaining costs, ground-source heat pump(GSHP) systems are an increasingly popular choice for providing heating, cooling and water heating to public and commercial buildings. Despite these ad- vantages and the growing awareness, GSHP systems to residential sectors have not been adopted in Korea until recently. A feasibility study of a residential GSHP system was therefore conducted using the traditional life cycle cost(LCC) analysis within the current electricity price framework and potential scenarios of that framework. As a result, when the current residential electricity costs for running the GSHP system are applied, the GSHP system has weak competitiveness to conven- tional HVAC systems considered. However, when the operating costs are calculated in the modified price frameworks of electricity, the residential GSHP system has the lower LCC than the existing cooling and heating equipments. The calculation results also show that the residential GSHP system has lower annual prime energy consumption and total pollutant emissions than the alternative HVAC systems considered in this work.

  • PDF

Economic Feasibility of Various HVAC Systems for Commercial Building and Comparison of Energy Tariffs between Korea and USA (업무시설용 건물 적용 복합 지열원 공조시스템의 경제성 평가 및 한미 요금 비교)

  • Koh, Jae-Yoon;Park, Yool;Seo, Dong-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.9
    • /
    • pp.599-607
    • /
    • 2008
  • In this study, air conditioning systems include ground source heat pump (GSHP), are evaluated for economic feasibility. The building is modeled an air conditioned for 280kW scale. This analysis is compared with the energy tariff programs of Korea and USA. The objectives of this paper are to evaluate the cost-effectiveness of the GSHP and combined system using Life-Cycle Cost (LCC) analysis, and to carry out the sensitivity analysis of key parameters. The paper considered the cases including the base case of air source heat pump and the other two alternates for comparisons. The combined system is not only a cost-effective way to the low energy consumption but also a way to avoid a high initial investment. The variations of initial investment and energy rates give a significant effect on the total LCC and payback period.

Optimal Design of the PSC Beam Reinforcement for Minimum Life-Cycle Cost (최소생애주기비용을 위한 PSC보 보강의 최적설계)

  • Bang, Myung-Seok;Han, Sung-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.5
    • /
    • pp.125-130
    • /
    • 2008
  • To optimize the selected reinforcing method for application to PSC Beam bridges, the reliability analysis was performed with consideration for the increase and decrease of the member section based on the standard design section, and the minimum life-cycle cost(LCC) was calculated from this analysis with consideration for the aleatory uncertainty. Moreover, the mean, 50%, 75%, and 90% distributions of the analysis results were re-evaluated quantitatively by considering the effect of the epistemic uncertainty. The reliability results gained from the application of the reinforcing method, as well as the optimal design method based on the minimum LCC, will provide more reasonable design criteria for the PSC Beam bridges.

A System Dynamics Model for Evaluation of Maintenance Cost Policy in Deteriorated School Building (노후 학교건물의 유지관리비용 정책 평가를 위한 시스템 다이내믹스 모델)

  • Kang, Suhyun;Kim, Sangyong
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.12
    • /
    • pp.181-188
    • /
    • 2019
  • The maintenance of school building is pivotal issue. However, it is difficult to obtain basic analysis data for LCC(Lifecycle Cost) analysis and maintenance planning of school building. Therefore, this study proposed System Dynamics(SD) techniques to make maintenance decisions for school building. The interaction between the major parameters related to the aging of a building, maintenance activities, and cost were expressed in Causal Loop Diagram. Based on this, the formula for the relationship between causal maps was defined and converted to Stock and Flow Diagram. Through the completed SD model the 50-year plan of 214 educational building were tested by considered in account budget, maintainability, and budget allocation opinions. As a result, the integrated SD model demonstrated that it can support strategic decision making by identifying the status class and LCC behavior of school buildings by scenario. According to the scenario analysis, the rehabilitation action of preventive maintenance that primarily repairs the buildings in condition grade C showed the best performance improvement effect relative to the cost. Therefore, if the proposed SD model is expanded to consider the effects of other educational policies, the crucial performance improvement budget can be estimated in the long-term perspective.

(Adaptive Component Metrics in Component Analysis Phase) (컴포넌트 분석단계에 적용 가능한 컴포넌트 메트릭스)

  • 고병선;박재년
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.5_6
    • /
    • pp.389-397
    • /
    • 2003
  • The component-based development methodology becomes famous as the new way for reuse. The goal of the reuse is improvement of quality, productivity and independence on the software development. For the improvement in the quality of a component-based system, it is necessary to research component metrics in the early phase of a component development. Hence, in this paper, we propose new component metrics using the information of a component analysis phase. Those are CCI(Complexity of Component Interface) and LCC(Lack Cohesion of Component interface). CCI indicates a difficulty about comprehension, modification, management, use of interface. LCC indicates a functional independence about how strong the elements are related with. Therefore, it is possible to predict and manage the quality of a component to be developed. Predicting a lowness of complexity and highness of cohesion as an independent functional unit by a component interface in the early phase of a component development, we can expect the improvement in the quality of a system.

Capacity Expansion Modeling of Water-distribution Network using GIS, VE, and LCC (GIS와 VE, LCC 개념에 의한 동적 상수도관망 대안 결정)

  • Kim, Hyeng-Bok
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 1999.12a
    • /
    • pp.21-25
    • /
    • 1999
  • Planning support systems(PSS) add more advanced spatial analysis functions than Geographic information systems(GIS) and intertemporal functions to the functions of spatial decision support systems(SDSS). This paper reports the continuing development of a PSS providing a framework that facilitates urban planners and civil engineers in conducting coherent deliberations about planning, design and operation & maintenance(O&M) of water-distribution networks for urban growth management. The PSS using dynamic optimization model, modeling-to-generate-alternatives, value engineering(VE) and life-cycle cost(LCC) can generate network alternatives in consideration of initial cost and O&H cost. Users can define alternatives by the direct manipulation of networks or by the manipulation of parameters in the models. The water-distribution network analysis model evaluates the performance of the user-defined alternatives. The PSS can be extended to include the functions of generating sewer network alternatives, combining water-distribution and sewer networks, eventually the function of planning, design and O&H of housing sites. Capacity expansion by the dynamic water-distribution network optimization model using MINLP includes three advantages over capacity expansion using optimal control theory(Kim and Hopkins 1996): 1) finds expansion alternatives including future capacity expansion times, sizes, locations, and pipe types of a water-distribution network provided, 2) has the capabilities to do the capacity expansion of each link spatially and intertemporally, and 3) requires less interaction between models. The modeling using MINLP is limited in addressing the relationship between cost, price, and demand, which the optimal control approach can consider. Strictly speaking, the construction and O&M costs of water-distribution networks influence the price charged for the served water, which in turn influence the. This limitation can be justified in rather small area because price per unit water in the area must be same as that of neighboring area, i.e., the price is determined administratively. Planners and engineers can put emphasis on capacity expansion without consideration of the relationship between cost, price, and demand.

  • PDF

A Study on the Estimation of Optimum Remodeling Period for Apartment Buildings using Total Cost (경년별 총비용을 고려한 공동주택의 리모델링 시기 추정에 관한 연구)

  • Son Chang-Baek;Oh Chi-Don
    • Korean Journal of Construction Engineering and Management
    • /
    • v.6 no.2 s.24
    • /
    • pp.111-119
    • /
    • 2005
  • Although the life-spans of most apartment buildings are over fifty years, they are often demolished and retrofitted only after twenty years, in spite of its remaining life expectancy, resulting in economical waste. The purpose of this paper is to estimate optimum remodeling period of apartment buildings using total cost. In this study it is seen that total sum of running cost of life-span on the buildings is about 4.69 times of initial cost till the fifty years of the life expectancy. The optimum remodeling period of the apartment building is thirty years applying the discount rate of $4.17\%$ and the discount rate should be $6.122\%$ to obtain the forty years of the optimum remodeling period. From the sensitivity analysis based on the change of the discount rates, it is seen that if discount rate decreases the optimum remodeling period can be extended, or vice versa. As a result, a time of the demolished and remodeling can be expected and the basic data can also be established for lengthening life-span of the apartment buildings.