• Title/Summary/Keyword: LCC최적설계

Search Result 50, Processing Time 0.029 seconds

Life-Cycle Cost Optimization of Steel Box Girder Bridges (강상자형교의 생애주기비용 최적설계)

  • 조효남;민대홍;권우성
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.557-566
    • /
    • 2002
  • This paper presents an optimum deck and girder system design for minimizing the life-cycle cost(LCC) of steel box girder bridges. The problem of optimum LCC design of steel box girder bridges is formulated as that of minimization of the expected total LCC that consists of initial cost, maintenance cost and expected retrofit costs for strength, deflection and crack. To demonstrate the cost effectiveness of LCC design of steel box girder bridges, the LCC optimum design is compared with conventional design method for steel box girder bridges. From the numerical investigations, it may be positively stated that the optimum design of steel box girder bridges based on LCC will lead to mote rational, economical and safer design.

Optimum Life-Cycle Cost Design of Steel Bridges (강교의 생애주기비용 최적설계)

  • Cho, Hyo-Nam;Lee, Kwang-Min;Kim, Jung-Ho;Choi, Young-Min;Bong, Youn-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.341-358
    • /
    • 2003
  • This paper proposed a general formulation of Life-Cycle Cost (LCC) models and LCC effective design system models of steel bridges suitable for practical implementation. An LCC model for the optimum design of steel bridges included initial cost and direct/indirect rehabilitation costs of a steel bridge as well as repair/replacement costs, loss of contents or fatality and injury losses, road user costs, and indirect socioeconomic losses. The new road user cost model and regional socioeconomic losses model were especially considered because of the traffic network. Illustrative design examples of an actual steel box girder and an orthotropic steel deck bridge were discussed to demonstrate the LCC effectiveness of the design of steel bridges. Based on the results of the numerical investigation, the LCC-effective optimum design of steel bridges based on the proposed LCC model was found to lead to a more rational, economical, and safer design compared with the initial cost-optimum design and the conventional code-based design.

Optimum Life-cycle Cost Design of Orthotropic Steel Deck Bridges (강상판교의 생애주기비용 최적설계)

  • Cho, Hyo Nam;Min, Dae Hong;Lee, Kwang Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.4
    • /
    • pp.337-349
    • /
    • 2001
  • This study present an optimum deck and girder system design for minimizing the life-cycle cost (LCC) of orthotropic steel deck bridges. The problem of optimum LCC design of orthotropic steel deck bridges is formulated as that of minimization of the expected total LCC that consists of initial cost, maintenance cost, expected retrofit costs for strength, deflection, and fatigue. To demonstrate the effect of LCC optimum design of orthotropic steel deck bridges, the proposed optimum LCC design is compared with the conventional method for orthotropic steel deck bridges design. From the numerical investigations, it may be positively stated that the proposed optimum design procedure for orthotropic steel deck bridges based on the LCC will lead to more rational, economical and safer design.

  • PDF

Establishment of BIM-LCC Analysis System for Selecting Optimal Design Alternative using Open KBIMS Libraries (개방형 KBIMS 라이브러리를 활용한 최적설계대안 선정을 위한 BIM-LCC분석 시스템 구축)

  • Lee, Chun-Kyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.153-161
    • /
    • 2020
  • Building information modeling (BIM) is a smart construction technique that is recognized as essential for current construction facility projects. The Public Procurement Service (a construction project-ordering agency) announced a plan to introduce BIM and has required changing the operation of projects by using BIM design information. LCC analysis is essential for items, quantity, and cost information of the construction, and it is expected that efficient work will be achieved by using BIM design information. In this study, a BIM-LCC analysis system was established for selecting optimal design alternatives by actively using open KBIMS libraries. The BIM-LCC analysis system consists of a single alternative and an optimal alternative LCC analysis, but it has a limitation in that only the architecture and machine libraries have been applied. However, by applying BIM, practical use and work efficiency can be expected. In order to use the method as an LCC analysis support tool with BIM design information in the future, it will be necessary to collect user opinions and improve the UI.

Indirect Cost Effects on Life-Cycle-Cost Effective Optimum Design of Steel Box Girder Bridge (강상자형교의 LCC 최적설계에 미치는 간접비용의 영향)

  • Lee, Kwang Min;Cho, Hyo Nam;Cha, Chul Jun;Eom, In Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.115-130
    • /
    • 2005
  • This paper presents the effects of indirect costs on Life-Cycle-Cost(LCC) effective optimum design of steel-box girder bridges. The LCC formulations considered in the LCC optimization of the bridges consist of initial cost and expected rehabilitation costs including repair/replacement costs, loss of contents or fatality and injury losses, and indirect costs such as road user costs and indirect socio-economic losses. To demonstrate the LCC-effectiveness for optimum design of the bridges, an actual steel box girder bridge having two continuous spans(2@50m=100m) is considered as a numerical example. And also, in this paper, various sensitivity analyses are performed to investigate the effects of indirect costs caused by traffic conditions such as number of detour route, number of lane on detour route, length of detour route, and traffic volumes on the LCC-effective optimum design. From the numerical investigations, it may be concluded that indirect costs caused by traffic network may sensitively influence on the LCC-effective optimum design of steel-box girder bridges. Therefore, it may be stated that the traffic conditions should be considered as one of the important items in the LCC-effective optimum design of the bridges.

Lifetime Reliability Based Life-Cycle Cost-Effective Optimum Design of Steel Bridges (생애 신뢰성에 기초한 강교의 LCC최적설계)

  • Lee, Kwang Min;Cho, Hyo Nam;Cha, CheolJun;Kim, Seong Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.75-89
    • /
    • 2006
  • This paper presents a practical and realistic Life-Cycle Cost (LCC) optimum design methodology of steel bridges considering time effect of bridge reliability under environmental stressors such as corrosion and heavy truck traffics. The LCC functions considered in the LCC optimization consist of initial cost, expected life-cycle maintenance cost and expected life-cycle rehabilitation costs including repair/replacement costs, loss of contents or fatality and injury losses, road user costs, and indirect socio-economic losses. For the assessment of the life-cycle rehabilitation costs, the annual probability of failure which depends upon the prior and updated load and resistance histories should be accounted for. For the purpose, Nowak live load model and a modified corrosion propagation model considering corrosion initiation, corrosion rate, and repainting effect are adopted in this study. The proposed methodology is applied to the LCC optimum design problem of an actual steel box girder bridge with 3 continuous spans (40 m+50 m+40 m=130 m), and various sensitivity analyses of types of steel, local corrosion environments, average daily traffic volume, and discount rates are performed to investigate the effects of various design parameters and conditions on the LCC-effectiveness. From the numerical investigation, it has been observed that local corrosion environments and the number of truck traffics significantly influence the LCC-effective optimum design of steel bridges, and thus realized that these conditions should be considered as crucial parameters for the optimum LCC-effective design.

Life-Cycle Cost-Effective Optimum Design of Steel Bridges Considering Environmental Stressors (환경영향인자를 고려한 강교의 생애주기비용 최적설계)

  • Lee, Kwang Min;Cho, Hyo Nam;Cha, Cheol Jun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.227-241
    • /
    • 2005
  • This paper presents a practical and realistic Life-Cycle Cost (LCC) optimum design methodology for steel bridges considering the long-term effect of environmental stressors such as corrosion and heavy truck traffics on bridge reliability. The LCC functions considered in the LCC optimization consist of initial cost, expected life-cycle maintenance cost, and expected life-cycle rehabilitation costs including repair/replacement costs, loss of contents or fatality and injury losses, road user costs, and indirect socio-economic losses. For the assessment of the life-cycle rehabilitation costs, the annual probability of failure, which depends upon the prior and updated load and resistance histories, should be accounted for. For the purpose, Nowak live load model and a modified corrosion propagation model, which takes into consideration corrosion initiation, corrosion rate, and repainting effect, are adopted in this study. The proposed methodology is applied to the LCC optimum design problem of an actual steel box girder bridge with 3 continuous spans (40m+50m+40m=130m). Various sensitivity analyses are performed to investigate the effects of various design parameters and conditions on the LCC-effectiveness. From the numerical investigation, it has been observed that local corrosion environments and the volume of truck traffic significantly influence the LCC-effective optimum design of steel bridges. Thus, these conditions should be considered as crucial parameters for the optimum LCC-effective design.

Life Cycle Cost Analysis for Design of Buildings based on the Lifetime Risk (생애 위험도기반 건축물의 설계단계 생애주기비용 분석 방법)

  • Baek, Byung-Hoon;Cho, Choong-Yeon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.3
    • /
    • pp.113-119
    • /
    • 2014
  • Recently, the demand on the practical application of life-cycle cost effectiveness for design and rehabilitation of structure is rapidly growing unprecedently in engineering practice. Accordingly, in the 21st century, it is almost obvious that life-cycle cost together with value engineering will become a new paradigm for all engineering decision problems in practice. However, in spite of impressive progress in the researches on the LCC, the most researches have only focused on the Deterministic or Probabilistic LCC analysis approach (Level-1 LCC Model) at design stage. Thus, the goal of this study is to develop a practical and realistic methodology for the Lifetime risk based Life-Cycle Cost (LCC)-effective optimum decision-making at design stage.

Economics analysis for life cycle cost design of bridges (LCC를 고려한 교량의 경제성 분석)

  • Shin, Yung-Seok;Pack, Jang-Ho;Ahn, Sung-Chan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.162-165
    • /
    • 2010
  • 합리적인 교량 대안선정을 위해서는 설계 시 경제성, 경관성, 안전성 및 기능성, 유지관리 용이성, 시공성 등 다양한 속성을 고려하여야 한다. 이 중 경제성은 초기비용뿐만 아니라 공용수명에 걸쳐 발생하는 유지관리비용, 보수 보강비용, 해체 폐기비용 등의 합인 총 생애주기비용에 대해 최소의 비용으로 최상의 가치를 창출하도록 하여야 한다. 본 연구에서는 건설계획과정에서 대표적으로 고려될 수 있는 대안으로 세 가지 교량 형식(강상자형교, 소수주형교, PSC-I형 거더교)을 대상구조물로 선정하고 교량의 공용수명은 상태등급곡선으로부터 추정한 내하율 곡선을 사용하여 산정하였다. LCC최적설계를 위해 설계변수, 제약조건, 목적함수를 구성하였고, 총 생애주기비용을 공용수명으로 나눈 연간생애주기비용을 사용하여 하여 합리적인 교량의 경제성 분석을 수행하였다.

  • PDF

Reliability-Based Optimum Design of High-Speed Railway Steel Bridges Considering Bridge/Rail Longitudinal Analysis and Bridge/Vehicle Dynamic Effect (교량/궤도 종방향 해석 및 교량/차량 동적영향을 고려한 고속철도 강교량의 신뢰성 최적설계)

  • Lee, Jong-Soon;Ihm, Yeong-Rok
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.974-982
    • /
    • 2009
  • To improve the effectiveness and economics the bridge design methodology considering the bridge/rail longitudinal analysis and bridge/vehicle dynamic effect suggested in this study. The reliability-based Life-Cycle Costs(LCC) effective optimum design is applied to a 2-main steel girder bridge, 5$\times$(1@50m) for comparison with conventional design, initial cost optimization and equivalent LCC optimization. As a result of the optimum design based on reliability, it may be stated that the design of High-Speed railway bridges considering the bridge/rail longitudinal analysis and bridge/vehicle dynamic effect are more efficient than typical existing bridges and LCC optimization without respect to bridge/rail longitudinal analysis and bridge/vehicle dynamic effect. The result of optimization design considering the interaction, design methodology suggested in this study, is higher than result of initial cost optimization design in initial cost, but that has the advantage than result of initial cost optimization design in expected LCC.