Indirect Cost Effects on Life-Cycle-Cost Effective Optimum Design of Steel Box Girder Bridge

강상자형교의 LCC 최적설계에 미치는 간접비용의 영향

  • Received : 2005.01.26
  • Accepted : 2005.04.10
  • Published : 2005.04.27

Abstract

This paper presents the effects of indirect costs on Life-Cycle-Cost(LCC) effective optimum design of steel-box girder bridges. The LCC formulations considered in the LCC optimization of the bridges consist of initial cost and expected rehabilitation costs including repair/replacement costs, loss of contents or fatality and injury losses, and indirect costs such as road user costs and indirect socio-economic losses. To demonstrate the LCC-effectiveness for optimum design of the bridges, an actual steel box girder bridge having two continuous spans(2@50m=100m) is considered as a numerical example. And also, in this paper, various sensitivity analyses are performed to investigate the effects of indirect costs caused by traffic conditions such as number of detour route, number of lane on detour route, length of detour route, and traffic volumes on the LCC-effective optimum design. From the numerical investigations, it may be concluded that indirect costs caused by traffic network may sensitively influence on the LCC-effective optimum design of steel-box girder bridges. Therefore, it may be stated that the traffic conditions should be considered as one of the important items in the LCC-effective optimum design of the bridges.

본 논문에서는 강상자형교 생애주기비용(Life-Cycle Cost: 이하 LCC) 최적설계에 미치는 간접비용의 영향에 관한 연구를 수행하였다. 강상자형교 LCC 최적설계를 위한 정식화는 초기비용, 기대복구(expected rehabilitation) 비용과 인적 혹은 물적 손실비용 등과 같은 기대비용 및 도로이용자비용, 그리고 사회-경제 손실비용을 등과 같은 간접비용(혹은 간접복구비용)을 고려하였다. 이와같은 정식화 모델을 이용하여 본 논문에서는 실제 2경간 연속 강상자형교(2@50m=100m)의 LCC 최적설계 문제에 적용하였고, 기존의 설계방법들과 LCC의 비용-효율성에 대해 비교 고찰하였다. 또한 본 논문에서는 LCC에서 큰 비중을 차지하는 간접비용이 강상자형교 LCC 최적설계에 미치는 영향을 고찰해 보기 위해 교량이 속해 있는 도로의 네트워크(우회도로수) 및 우회도로 조건(우회도로 차로수 및 길이), 교통량 등과 같은 교통조건의 변화에 따른 다양한 민감도 분석을 수행하였다. 수치해석의 결과 교통량, 우회도로수, 우회도로 차로수 등은 강상자형교의 LCC 최적설계에 민감한 영향을 미치는 것으로 나타났다. 따라서 향후 신설 강상자형교의 LCC최적설계시 간접비용에 중요한 영향을 미치는 교통조건이 중요한 인자로 고려되어야 할 것으로 판단된다.

Keywords

Acknowledgement

Supported by : POSCO

References

  1. 경기개발연구원 (1999) 경기도 물류비용 분석 및 물류체계 개선연구
  2. 과학기술부, 엔지니어링기술진흥법 (1997)
  3. 건설교통부/시설안전기술공단 (2000) 도로교의 공용수명 연장방안 연구, 시설안전기술공단 연구보고서 BR-2000-R1-37
  4. 건설교통부/시설안전기술공단 (2001) LCC개념을 도입한 시설안전관리체계 선진화방안 연구, 시설안전기술공단 연구보고서 TS-2001-R3-001
  5. 사단법인 도로교통협회, 도로교설계기준(2000)
  6. 서울특별시건설안전관리본부 (2002) 도로관리사업소 시설물유지보수공사 설계지침
  7. 이광민 (2000) 강상판교의 Life-Cycle Cost 설계, 한양대학교 석사학위논문
  8. 이수범, 심재익 (1997) 교통사고비용의 추이와 결정요인, 교통개발연구원 연구보고서, 연구총서 97-09
  9. 원제무 (2000) 알기 쉬운 도시교통, 박영사
  10. 조효남 (1998) 강상형교의 최적설계 프로그램(CAOD-sb) 개발, 삼보기술단, 1차년도 보고서
  11. 조효남, 이광민, 김정호, 최영민, 봉연종(2003) 강교의 생애주기비용 최적설계, 강구조학회논문집, 강구조학회, 2003년 8월호
  12. 조효남, 민대홍, 조준석 (2001) 고속철도 강교량의 총기대비용 최적설계, 대한토목학회논문집, 2001년 9월호, pp.753-760
  13. 조효남, 이두화, 정지승, 민대홍 (1999) 강상판교의 다목적 다단계 최적설계. 6th International Conference on Steel & Space Structures, pp.313-320
  14. 정지승 (1999) 강바닥판교의 다단계 다목적 최적설계, 한양대학교 박사학위논문
  15. 한국강구조학회 (1997) 고속철도의 강교량 활용화에 관한 연구, 최종보고서
  16. 한국도로공사, 97 도로설계실무편람(1997)
  17. Albrecht, P. (1983) S-N Fatigue Reliability Analysis of Highway Bridges, Probabilistic Fracture Mechanics and Fatigue Methods: Application for Structural Design and Maintenance, ASTM STP 798
  18. Ang, A. H-S. and De Leon, D. (1997) Determination of optimal target reliabilities for design and upgrading of structures, Structural Safety, 19(1). pp.91-103 https://doi.org/10.1016/S0167-4730(96)00029-X
  19. Ang, A. H-S. and Tang, W. H. (1984) Probability Concepts in Engineering Planning and Design. Vol. I and II, John Wiley
  20. Berthelot, C. F., Sparks, G. A., Blomme, T., Kajner, L., and Nickeson, M. (1996) Mechanistic-probabilistic vehicle operating cost model, Journal of Transportation Engineering, ASCE, 122(5), pp.337-341
  21. Boisvert, R. N. (1992) Indirect losses from a catastrophic earthquake and the local, regional, and national interest, pp. 209-265 in: Indirect Economic Conse -quences of a Catastrophic Earthquake, Development Technologies, Inc. Washington, D. C.
  22. Cho, H. N., and Ang, A. H-S. (1989) Reliability Assessment And Reliability-Based Rating of Existing Road Bridges, 5th International Conference on Structural Safety and Reliability, pp.2235- 2238
  23. Cho, H. N. (2002a) Life Cycle Cost Effectiveness for Design and Rehabilitation of Civil Infrastructures, Proc. of SEWC02
  24. Cho, H. N., and Ang, A. H-S. Reliability Assessment And Reliability-Based Rating of Existing Road Bridges. 5th International Conference on Structural Safety and Reliability, pp.2235-2238. 1989
  25. Cho, H. N. and Min D. H. (2002b) Life-Cycle Cost Optimization of Steel Box Girder Bridges, Journal of constructional Steel Research (In Press)
  26. Cho, H. N., Ang, A. H-S., Lim, J. K., and Lee, K. M. (2001b), Reliability-Based Optimal Seismic Design and Upgrading of Continuous PC bridges Based on Minimum Expected Life-Cycle Costs, Proc. of ICOSSAR01
  27. Cho, H. N., Min, D. H., and Lee, K. M. (2001a) Optimum Life-Cycle Cost Design of Orthotropic Steel Deck Bridges, Journal of International Steel Structure, ASCE, Vol. 1
  28. De Brito, J. and Branco, F. A. (1995) Bridge management policy using cost analysis, Proceedings of Institution of Civil Engineers: Structures and Buildings, 104, pp.431-439
  29. De Brito, J. and Branco, F. A. (1998) Road bridges functional failure costs and benefits, Canadian Journal of Civil Engineering, 25, pp.261-270 https://doi.org/10.1139/cjce-25-2-261
  30. Estes, A.C. (1997) A System Reliability Approach to the lifetime Optimization of Inspection and Repair of Highway Bridges, Ph.D. Dissertation, Univ. of Colorado
  31. EMME/2 User's Manual (1999) Software Release 9.0, INRO.1608-1623
  32. Frangopol, D. M., and Lin, K. Y. (1997) Life-Cycle Cost Design of Deteriorating Structures, Journal of Struct. Eng., ASCE, Vol. 123, No. 10
  33. Hart, G. C. Uncertainty Analysis, Loads, and Safety in Structural Engineering. Prentice-Hall, 1982
  34. Kuribayashi, E. and T. Tazaki (1983) Outline of the earthquake disaster, pp.67-90 in : Report on the Disaster Caused by the Miyagi-ken-oki Earth -quake of 1978, Report No. 159, Public Work Research Institute, Ministry of Construction, Japan
  35. Lee, J. C. (1996) Reliability-based cost effective aseismic design of reinforced concrete frame-wall building, Ph.D dissertation, Univ. of California Irvine
  36. Melchers, R. E. (1987) Structural Reliability, Analysis and Prediction, Ellis Horwood Ltd., West Sussex, England
  37. Nowak, A.S. (1992) Calibration of LRFD Bridge Design Code, National Cooperative Highway Research, Final Report pp.12-33
  38. Seskin, S. N. (1990) Comprehensive framework for highway economic impact assessment methods and result, Transportation Research Record 1274, Transporationa Research Board, Washington, D.C., pp.24-34
  39. Stewart M.G. and Hossain, M.B. (2001) Timedependant Deflection, Serviceability Reliability and Expected Cost for RC beams, Structural Safety and Reliability, Corotis et. al. (eds)
  40. Vanderplaats, Garret N. (1986) ADS: A FORTRAN Program for Automated Design Synthesis. Engineering Design Optimization, INc, Santa Barbara, California
  41. Wen, Y. K. and Kang, Y. K. (1997) Optimal seismic design based on life-cycle cost, Proceedings of the International Workshop on Optimal Performance of Civil Infrastructure Systems, ASCE, Portland, Oregon, pp.194-210
  42. Zhao, Z., Haldar, A., and Breen Jr, F. L., Fatigue-reliability evaluation of steel bridges, J. Struct. Engrg., ASCE, Vol.120, No.5, 1994, pp.1608- 1623