• Title/Summary/Keyword: LCA (Life Cycle Assessment)

Search Result 307, Processing Time 0.024 seconds

A Study on the Life Cycle Environmental Impact Comparison of Recycled Polyol of Waste Polyurethane with Virgin Polyol (폐 우레탄 재생 폴리올과 신재 폴리올의 전과정 환경영향 비교에 관한 연구)

  • Yang, Inmog;Kim, Youngsil;Lee, Daesoo;Cho, Bong Gyoo;Ahn, Joong Woo
    • Clean Technology
    • /
    • v.21 no.3
    • /
    • pp.171-177
    • /
    • 2015
  • A life cycle assessment (LCA) methodology was employed to evaluate environmental impact of recycled polyol from polyurethane in an R&D stage and to suggest future direction for improvement of environmental performance of the recycling technology. The comparison result shows between recycled polyol in the developing stage and in the anticipated mass production with virgin polyol production that environmental impact of recycled polyol of the developing stage and the anticipated mass production level correspond to 93%, 60% of that of virgin polyol, respectively. The LCA result identifies improvement areas of reducing environmental impact in recycling polyols, that is, use of alkylene oxide and steam. In the future research, this must be taken into consideration for better performance of recycling technology.

Environmental Impact Evaluation of Virgin Pulp Using Life Cycle Assessment Methodology (LCA기법을 이용한 천연펄프의 환경 영향 평가)

  • 김형진;조병묵;황용우;박광호
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.1
    • /
    • pp.49-60
    • /
    • 2004
  • Life Cycle Assessment for the pulp, which is mainly used as the raw material of fine paper, base paper for food packaging and paper cup, has been carried out in this study to consider environmental aspects by quantifying the environmental emission and to evaluate its environmental impact potential. The system boundary was selected from cradle to gate stage(raw material acquisition, transportation of raw material and product manufacturing) of the product. Environmental impact was divided into 8 categories considering Korean situation: abiotic resource depletion, global warming, ozone depletion, acidification, eutrophication, photochemical oxidant creation, ecotoxicity and human toxicity. In Life Cycle Impact Assessment(LCIA) methodology phase, Ecopoint, Eco-indicator 95 and Korean eco-indicator were used and the results carried out by each methodology were compared. The results from this study were also compared with those of foreign study to verify the reliability of the results. The results of the study could be utilized as the basic data for Environmental Management System(EMS), Design for Environment(DfE) and Type III eco-labeling in the paper and paper-related industry.

Life Cycle Assessment and Improvement Assessment for Manufacturing Process of Corrugated Package (골판지 포장재의 생산공정에 대한 LCA 수행 및 친환경 공정개선)

  • Jo, Hyun Jung;Hwang, Yong Woo;Park, Kwang Ho;Jo, Byoung Muk;Kim, Hyoung Jin
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.620-627
    • /
    • 2005
  • In this study, life cycle assessment (LCA) on one of corrugated cardboard box as functional unit was carried out. System boundary of this study divided according to raw material acquisition, corrugated cardboard manufacture and corrugated cardboard box manufacture stage. And environmental impacts are evaluated on each stage and sub-process. The impact categories are classified into eight categories of abiotic resource depletion, global warming stratospheric ozone depletion, photochemical oxidant creation, air acidification, eutrophication, ecotoxicity and human toxicity. From the results, it is found that environment impacts at raw material acquisition stage is the highest as about 92% of whole stage due to liner board manufacture stage. The highest environmental impacts at sub-process of corrugated cardboard and box manufacture stage is a single facer and D/W backer process that included as main process in corrugated cardboard manufacture, and is caused by used energies like electricity, B-C oil, and etc. And then diagnosis for clean production process system of package is carried out. Through diagnosis, on loss rate is reduced and inner pressure intensity of box is improved. After improvement, environmental impact was decreased about 3.8% compared with before improvement.

Basic Design of Software for Eco-Efficiency Assessment of Electric Motor Unit(EMU) (전동차 에코효율성 평가를 위한 S/W 기본설계)

  • Kim, Yong-Ki;Lee, Jae-Young;Seo, Min-Seok;Eun, Jong-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1253-1258
    • /
    • 2006
  • As a global effort to conservate the environment, life cycle assessment(LCA) which considers the environmental impact through the life cycle of a product, from acquiring of resources to scrapping, has been actively applied. The LCA is a tool to calculate quantitatively the environmental impacts caused by products or services through their life cycles. Eco-efficiency need that express value of environmental impact provision EMU and develops in two forms according to use target of Eco-efficiency as a tool that environmental impact of EMU. It is a strategic instrument which assists stakeholders to understand which products, processes or services to target with future investments and which are not by comparing economic and ecological values. The results stand for aggregated information on economical value and environmental impact. Also, In this method, it is important to derive EPI(Environmental Performance Index) and SPI(Service Performance Index) from the sources available. The following is used as one of Eco-efficiency tools to achieve the target performance of processes, products and services for designer or projector. According to the eco-efficiency methodology for EMU developed in this study, the user definition and the DB design were carried out as a basic design of eco-efficiency S/W.

  • PDF

Life Cycle Assessment on the End-of-Life Vehicle Treatment System in Korea (국내 폐자동차 처리시스템에 대한 전과정평가)

  • Hong, Seok-Jin;Jeong, Kee-Mo;Hong, John-Hee;Yun, Ju-Ho;Hur, Tak
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.105-112
    • /
    • 2005
  • This study aims at evaluating the environmental impacts stemmed from the End-of-Life Vehicle(ELV) treatment systems in Korea, using Life Cycle Assessment(LCA) method. In this study, both environmental burden from the ELV dismantling process & recycling processes and environmental benefit which were derived from the avoided environmental impacts by substituting recycled materials for virgin materials were considered. First of all, the key issues which were defined as the environmental aspects that account for more than $1\%$ out of the total environmental impacts were identified from the Life Cycle Impact Assessment(LCIA). $CO_2$, crude oil, natural gas, coal, etc. were found out to be the key issue parameters. From the LCI Analysis and LCIA studies, it was shown that the significant environmental aspects were related with the recycling process of ferro scrap, the shredding process of compressed car bodies and the dismantling process of end-of-life engines. In particular, the recycling process of ferro scrap has the most significant effects on the environmental impacts of the ELV treatment systems. Based on these results, it is recommended to improve the recycling process of ferro scrap in order to make the ELV treatment systems more environmentally sound.

Global Environmental Impacts Assessment of Power Generation Technologies with LCA Method (LCA를 통한 국내 발전기술의 글로벌 환경성 평가)

  • Chung Whan-Sam;Kim Seong-Ho;Kim Tae-Woon
    • Journal of Energy Engineering
    • /
    • v.14 no.2 s.42
    • /
    • pp.140-146
    • /
    • 2005
  • In this study, a quantitative environmental impacts assessment was performed for various power technologies with a lift cycle assessment (LCA) method. The LCA is regarded as a useful tool far analyzing diverse environmental impacts at a local, regional, and global aspect. The investigated power plants such as nuclear, coal, and LNC power systems were selected because they took share over $90\%$ of domestic elec-tricity supply in Korea. Furthermore, a wind power technology was included as a representative energy source out of Korean renewable energy systems. According to the three geological aspects, environmental impacts had been categorized into eight types. For these impact categories, characterization had been carried out for comparing environmental burdens of power systems under consideration. Then, normalization had been done in order to gain a better understanding of the relative size among impact categories.

An analysis on CO2 emission of structural steel materials by strength using Input-Output LCA (산업연관분석법을 이용한 강도에 따른 구조용 강재의 이산화탄소 배출량 데이터 구축)

  • Hong, Tae-Hoon;Ji, Chang-Yoon;Jang, Min-Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.4
    • /
    • pp.132-140
    • /
    • 2012
  • Along with the increasing interest in environmental problems such as global warming, the South Korean government has established policies and regulations to reduce the amount of greenhouse gases, targeting a 30% reduction of $CO_2$ compared to business-as-usual levels by 2020. Thus, there have been many studies in construction field to control and reduce the amount of $CO_2$ emitted from buildings. $CO_2$ emission from the building construction could be obtained by using the life cycle assessment(LCA) methodology. In LCA, it is essential to have life cycle inventory(LCI) data of construction materials consisting of $CO_2$ emission data that have been defined and examined in a detailed way in order to obtain more accurate and detailed $CO_2$ emission of buildings. To date, however, the LCI data have been acquired only for the representative materials. Accordingly this study aimed to propose detailed $CO_2$ emission data for steel rebar and H-beam, which are the essential structural steel materials, by strength and type. To accomplish the objective, this study used Input-Output LCA methodology which is based on the Input-Output table. It is believed that the $CO_2$ emission data of steel materials acquired from this study would allow a more accurate assessment of $CO_2$ emission for diverse structural design alternatives.

Life Cycle Assessment on Process of Wet Tissue Production (물티슈 제조공정의 전과정 평가)

  • Ahn, Joong Woo
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.269-274
    • /
    • 2018
  • In this study, Life Cycle Assessment (LCA) of wet tissue manufacturing process was performed. The wet tissue manufacturing process consists of preparation of wetting agent (chemical liquid), impregnation of nonwoven fabric into wetting agent and primary and secondary packaging. Data and information were collected on the input and output of the actual process from a certain company and the database of the Korea Ministry of Environment and some foreign countries (when Korean unavailable) were employed to connect the upper and the lower process flow. Based on the above and the potential environmental impacts of the wet tissue manufacturing process were calculated. As a result of the characterization, Ozone Layer Depletion (OD) is 3.46.E-06 kg $CFC_{11}$, Acidification (AD) is 5.11.E-01 kg $SO_2$, Abiotic Resource Depletion (ARD) is $3.52.E+00\;1yr^{-1}$, Global Warming (GW) is 1.04.E+02 kg $CO_2$, Eutrophication (EUT) is 2.31.E-02 kg ${PO_4}^{3-}$, Photochemical Oxide Creation (POC) was 2.22.E-02 kg $C_2H_4$, Human Toxicity (HT) was 1.55.E+00 kg 1,4 DCB and Terrestrial Ecotoxicity (ET) was 5.82.E-04 kg 1,4 DCB. In order to reduce the environmental impact of the manufacturing process, it is necessary to improve the overall process as other general cases and change the raw materials including packaging materials with less environmental impact. Conclusively, the energy consumed in the manufacturing process has emerged as a major issue, and this needs to be reconsidered other options such as alternative energy. Therefore, it is recommended that a process system should be redesigned to improve energy efficiency and to change to an energy source with lower environmental impact. Due to the nature of LCA, the final results of this study can be varied to some extent depending on the type of LCI DB employed and may not represent of all wet tissue manufacturing processes in the current industry.

Life Cycle Assessment of Steel Box Girder Bridge (강교량구조물의 환경적합성에 관한 전과정평가)

  • Kim, Sang-Hyo;Choi, Moon-Seock;Cho, Kwang-Il;Yoon, Ji-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4A
    • /
    • pp.269-278
    • /
    • 2011
  • Recently, methods on minimizing environmental effect caused from human-made goods have been studied in various research fields. Such issue has been also spotlighted into the civil engineering field; however, application of environmental performance assessment on civil structures is very complicated, since they handles vast ranges of materials and has comparatively long life span with various construction stages. Thus, this study intended to apply environmental performance assessment into an ordinary type of steel box girder bridge, using most popular Life cycle assessment (LCA) procedures, which are called Survey-based method and Indirect method. For better comparison of two methods, greenhouse effect of the example bridge is considered. As result of analysis, total $CO_2$ emission is evaluated as 241.27 ton with Survey-based method while it is evaluated as 221.03 ton with Indirect method. It is also revealed that most $CO_2$ is generated from the process of manufacturing and producing construction materials. Such result indicates that the efficient design which secures certain level of structural safety with minimized input materials. It is considered that the specific LCA on civil structure performed in this study could be utilized to other civil structures for reasonable environmental performance assessment.

Application of Life Cycle Assessment for Cleaner Production of Paper Products (종이제품의 청정생산을 위한 LCA기법의 적용)

  • Hwang, Yong-Woo;Jo, Byoung-Muk;Kim, Hyoung-Jin;Park, Kwang-Ho
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2002.11a
    • /
    • pp.228-233
    • /
    • 2002
  • In this study, Life Cycle Assessment method has been carried out the Corrugated board box in considering environmental aspects by quantifying the environmental emission and assessing its environmental impact potential. The system boundary in this study is selected from cradle to gate stage(raw material acquisition, raw material production and product manufacturing) of the paper product. To evaluate the environmental impact potential, impact categories are divided into 8 categories. As a results, abiotic resource depletion of the impact categories has the largest contribution to the total impact potential as 31.02% of total, Next were continued ecotoxicity having a contribution of 27.17%. In the life cycle, environmental impacts from law material production stage were contributed largely as 80.78%.

  • PDF