• Title/Summary/Keyword: LC-MS-MS

Search Result 1,321, Processing Time 0.032 seconds

Screening of Lactic Acid Bacteria for Strong Folate Synthesis and Optimization of Fermentation (고엽산 생산능의 유산균 탐색 및 발효 조건 최적화)

  • Du, Kyung Min;Park, Se Jin;Park, Myung Soo;Ji, Geun Eog
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.328-333
    • /
    • 2014
  • Folate is a water-soluble vitamin B that is required for the synthesis of amino acids and nucleic acids. It plays an important role in cell division and cell growth in several living organisms. The purpose of this study was to screen strong folate-synthesizing bacteria and to optimize their culture conditions for folate production. Folate production was quantified by microbiological assays by using folate-dependent strain Lactobacillus rhamnosus KCTC 3237. Folate derivatives were identified by LC-MS/MS. Of the 65 strains of bifidobacteria and lactobacilli tested, L. plantarum Fol 708 demonstrated the greatest ability to produce folate. Its optimal pH for folate production was 5.5 in a pH-controlled, lab-scale fermenter. Coculturing L. plantarum Fol 708 with L. brevis GABA 100 in a milk medium enhanced the level of folate produced in comparison to culturing L. plantarum Fol 708 alone.

Assessment of Hepatic Cytochrome P450 3A Activity Using Metabolic Markers in Patients with Renal Impairment

  • Kim, Andrew HyoungJin;Yoon, Sumin;Lee, Yujin;Lee, Jieon;Bae, Eunjin;Lee, Hajeong;Kim, Dong Ki;Lee, SeungHwan;Yu, Kyung-sang;Jang, In-Jin;Cho, Joo-Youn
    • Journal of Korean Medical Science
    • /
    • v.33 no.53
    • /
    • pp.298.1-298.10
    • /
    • 2018
  • Background: The renal function of individuals is one of the reasons for the variations in therapeutic response to various drugs. Patients with renal impairment are often exposed to drug toxicity, even with drugs that are usually eliminated by hepatic metabolism. Previous study has reported an increased plasma concentration of indoxyl sulfate and decreased plasma concentration of $4{\beta}$-hydroxy (OH)-cholesterol in stable kidney transplant recipients, implicating indoxyl sulfate as a cytochrome P450 (CYP) inhibiting factor. In this study, we aimed to evaluate the impact of renal impairment severity-dependent accumulation of indoxyl sulfate on hepatic CYP3A activity using metabolic markers. Methods: Sixty-six subjects were enrolled in this study; based on estimated glomerular filtration rate (eGFR), they were classified as having mild, moderate, or severe renal impairment. The plasma concentration of indoxyl sulfate was quantified using liquid chromatography-mass spectrometry (LC-MS). Urinary and plasma markers ($6{\beta}$-OH-cortisol/cortisol, $6{\beta}$-OH-cortisone/cortisone, $4{\beta}$-OH-cholesterol) for hepatic CYP3A activity were quantified using gas chromatography-mass spectrometry (GC-MS). The total plasma concentration of cholesterol was measured using the enzymatic colorimetric assay to calculate the $4{\beta}$-OH-cholesterol/cholesterol ratio. The correlation between variables was assessed using Pearson's correlation test. Results: There was a significant negative correlation between MDRD eGFR and indoxyl sulfate levels. The levels of urinary $6{\beta}$-OH-cortisol/cortisol and $6{\beta}$-OH-cortisone/cortisone as well as plasma $4{\beta}$-OH-cholesterol and $4{\beta}$-OH-cholesterol/cholesterol were not correlated with MDRD eGFR and the plasma concentration of indoxyl sulfate. Conclusion: Hepatic CYP3A activity may not be affected by renal impairment-induced accumulation of plasma indoxyl sulfate.

Evaluation of Cyantraniliprole Residues Translocated by Lettuce, Spinach and Radish (상추, 시금치 및 알타리무에 의한 Cyantraniliprole의 흡수이행 잔류량 평가)

  • Yoon, Ji Hyun;Lee, Seung Won;Lim, Da Jung;Kim, Seon Wook;Kim, In Seon
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.4
    • /
    • pp.335-344
    • /
    • 2021
  • BACKGROUND: Cyantraniliprole is a systemic diamide insecticide that has been used to control lepidopteran pests in agriculture. Cyantraniliprole has become an issue due to its potentiality of unexpectable contamination in rotational crop cultivation. Thus, studies on the evaluation of cyantraniliprole translocated from soil into rotational crops are required. METHODS AND RESULTS: Cyantraniliprole was treated at a yearly maximum application level onto bare soil under greenhouse conditions in two geographically different regions. Lettuce was transplanted and spinach and radish were sown onto the soil 30 and 60 days-plant back intervals (PBIs) after cyantraniliprole treatment. The QuEChERS method was modified and coupled with LC/MS/MS analysis to determine the residues of cyantraniliprole in soil and plant samples. The methods for sample preparation and instrumental conditions were validated to meet the criteria of Codex guidelines and were successful to determine cyantraniliprole quantitatively and qualitatively in the samples. Cyantraniliprole residues in lettuce samples were 0.01 mg/kg for PBI 60 and 0.02 mg/kg for PBI 30, respectively. The residues in spinach samples were 0.01 mg/kg for PBI 60 and 0.01~0.02 mg/kg for PBI 30, respectively. Less than limit of the quantitation (LOQ) level (0.01 mg/kg) of cyantraniliprole was observed in radish samples. The residues in the plant samples were found as the levels less than maximum residue limit (MRL) for leafy and root vegetables. CONCLUSION(S): This study suggests PBI 30~60 days for rotational cultivation of lettuce, spinach and radish in greenhouse soil treated with cyantraniliprole at a yearly maximum application level.

Investigation and Risk Characterization on the Contamination Level of Herbal Medicines Without Legal Benzo(a)pyrene Specification (벤조피렌 기준 미설정 한약재의 오염도 조사 및 위해도 결정)

  • Park, Young-Ae;Ko, Suk-Kyung;Cho, Seok-Ju;Hwang, In-Sook;Shin, Gi-Young;Moon, Kwang-Deog
    • Korean Journal of Pharmacognosy
    • /
    • v.52 no.4
    • /
    • pp.219-227
    • /
    • 2021
  • By analysing the benzo(a)pyrene concentration using HPLC-FLD and LC-MS/MS, pollution levels of herbal medicines without permitted benzo(a)pyrene specification were investigated. Average benzo(a)pyrene concentrations were 38.30, 37.46 and 21.22 ㎍/kg for Amomi Tsao-ko Fructus, Mume Fructus and Coptidis Rhizoma, respectively, which are 4 to 7 times higher than maximum permitted benzo(a)pyrene concentration of Rehmanniae Radix Preparata and Rehmanniae Radix, i.e. 5.0 ㎍/kg. Proportion of detected samples exceeding 5.0 ㎍/kg benzo(a)pyrene concentration was 22% for Cimicifugae Rhizoma and Scrophulariae Radix, 44% for Forsythiae Fructus, 67% for Mume Fructus, 100% for Amomi Tsao-ko Fructus and Coptidis Rhizoma, and collectively 29% (36 out of 125 samples) in average. In terms of risk characterization results, human exposure of benzo(a)pyrene were 7.96, 3.49 and 1.61 ng/kg b.w./day and the margin of exposure(MOE) were 1.25 × 104, 2.86 × 104 and 6.20 × 104 for Mume Fructus, Amomi Tsao-ko Fructus and Coptidis Rhizoma, respectively. MOE banding of those herbal medicines was categorized to 'low concern'. However, considering that human exposure of benzo(a)pyrene for food is legislated to 1.4~2.5 ng/kg b.w./day, it was urgent to set up the guideline of benzo(a)pyrene in herbal medicines.

Bioavailability and Anti-inflammatory Effect of Fermented Red Ginseng in BALB/c Mouse (BALB/c 마우스에서 발효 홍삼 Ginsenoside의 생체이용율과 항염효과)

  • Lee, Eun Kyu;Bae, Chu Hyun;Kim, Yu Jin;Park, Soo-Dong;Shim, Jae-Jung;Yu, Youngbob;Lee, Jung-Lyoul
    • Korean Journal of Plant Resources
    • /
    • v.34 no.5
    • /
    • pp.433-442
    • /
    • 2021
  • The fermented red ginseng by microorganism is known to increase pharmacological activity in vivo. To evaluate the bioavailablity of red ginseng fermented by probiotics, we conducted the pharmacokinetic study of ginsenoside Rb1, Rd and total ginsenosides (TG, ginsenosides Rb1 + Rd + Rg1 + F2 + Rg3 + compound K) in BALB/C mice. The AUC value of ginsenoside Rb1 in mice serum administered with 600mg/kg drugs showed 21.93 ± 14.68 ng·h/mL (RGw, water extract), 275.211 ± 110.04 ng·h/mL (RGe, 50% ethanol extract) and 404.91 ± 162.57 ng·h/mL (fRGe, fermented red ginseng extract). Analysis of ginsenoside Rd also showed a higher ACU value in fRGe than in RGw or RGe. And the AUC value of total ginsenosides in mice serum treated with 600 mg/kg were observed 42.12 ± 23.44 ng·h/mL (RGw), 321.44 ± 133.5 ng·h/mL (RGe) and 537.33 ± 229.01 ng·h/mL (fRGe), respectively. Cmax value of ginsenoside Rb1 in mice administered with 600mg/kg were observed 3.67 ± 3.34 ng/mL (RGw), 23.27 ± 8.81 ng/mL (RGe) and 25.52 ± 7.29 ng/mL (fRGe). These results can be considered that the fermented red ginseng has more bioavailability than that of unfermented red ginseng. In quantitative analysis of the inflammation-related cytokines IL-1β and TNF, no significant difference was found between the fermented red ginseng (fRGe) and the red ginseng (RGe).

Phytotoxicity and Translocation of Residual Diquat Dibromide from Sandy Loam and Loam Soil to Following Crops Cultivating in the Soils

  • Cho, Il Kyu;Kim, Won-Il;Yang, Hae-Ryong;Seol, Jae Ung;Oh, Young Goun;Lee, Dong-gi;Moon, Joon-Kwan;Cho, Woo Young;Kim, Kil Yong
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.4
    • /
    • pp.260-269
    • /
    • 2021
  • BACKGROUND: Diquat dibromide is a fast-acting nonselective herbicide and plant growth regulator. In this study, in order to understand the possibility of unintentional pesticide contamination in the following crops, the phytotoxicity and transition of diquat dibromide residue in soil into the following crops such as pepper, radish, lettuce and corn have been assessed through phytotoxicity trial and residual evaluation in the unintentional contamination of the higher residual diquat dibromide. METHODS AND RESULTS: The pepper, radish, lettuce and corn were cultivated in the sandy soil and loam soil where the 35 mg/kg and 90 mg/kg diquat dibromide were applied, respectively. Mild growth inhibition symptoms were observed in radish, lettuce and corn crops at the 90 mg/kg- diquat dibromide treatment on the 30 day of cultivation. Diquat dibromide was analyzed using liquid chromatography QTRAP (LC-MS/MS). The recovery rates of diquat dibromide from soil and crop were determined within range from 89.1 to 116.4% with relative standard deviation less than 14.7%. Diquat dibromide residues in soil were found to be 23.90-30.22 and 69.59-82.57 mg/kg from the 35 mg/kg and 90 mg/kg of diquat dibromide-treated soil, respectively after 30 days of crop cultivation. This result implicates that diquat dibromide did not convert to metabolites and remained mostly in the soil, even though it was partially decomposed during crop cultivation. In addition, the diquat dibromide in pepper and radish that were grown for 47 days, and lettuce and corn that were cultivated for 30 days were detected to be 0.01 mg/kg or less in the sandy loam and loam soil where the 90 mg/kg diquat dibromide was applied. CONCLUSION(S): Diquat dibromide did not cause severe phytotoxicity in the following crops as well as it did not uptake and distribute to the following crops, even though it was considered to be residual in the soil.

High frequency somatic embryogenesis and plant regeneration of interspecific ginseng hybrid between Panax ginseng and Panax quinquefolius

  • Kim, Jong Youn;Adhikari, Prakash Babu;Ahn, Chang Ho;Kim, Dong Hwi;Kim, Young Chang;Han, Jung Yeon;Kondeti, Subramanyam;Choi, Yong Eui
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.38-48
    • /
    • 2019
  • Background: Interspecific ginseng hybrid, Panax ginseng ${\times}$ Panax quenquifolius (Pgq) has vigorous growth and produces larger roots than its parents. However, F1 progenies are complete male sterile. Plant tissue culture technology can circumvent the issue and propagate the hybrid. Methods: Murashige and Skoog (MS) medium with different concentrations (0, 2, 4, and 6 mg/L) of 2,4-dichlorophenoxyacetic acid (2,4-D) was used for callus induction and somatic embryogenesis (SE). The embryos, after culturing on $GA_3$ supplemented medium, were transferred to hormone free 1/2 Schenk and Hildebrandt (SH) medium. The developed taproots with dormant buds were treated with $GA_3$ to break the bud dormancy, and transferred to soil. Hybrid Pgq plants were verified by random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) analyses and by LC-IT-TOF-MS. Results: We conducted a comparative study of somatic embryogenesis (SE) in Pgq and its parents, and attempted to establish the soil transfer of in vitro propagated Pgq tap roots. The Pgq explants showed higher rate of embryogenesis (~56% at 2 mg/L 2,4-D concentration) as well as higher number of embryos per explants (~7 at the same 2,4-D concentration) compared to its either parents. The germinated embryos, after culturing on $GA_3$ supplemented medium, were transferred to hormone free 1/2 SH medium to support the continued growth and kept until nutrient depletion induced senescence (NuDIS) of leaf defoliation occurred (4 months). By that time, thickened tap roots with well-developed lateral roots and dormant buds were obtained. All Pgq tap roots pretreated with 20 mg/L $GA_3$ for at least a week produced new shoots after soil transfer. We selected the discriminatory RAPD and ISSR markers to find the interspecific ginseng hybrid among its parents. The $F_1$ hybrid (Pgq) contained species specific 2 ginsenosides (ginsenoside Rf in P. ginseng and pseudoginsenosides $F_{11}$ in P. quinquefolius), and higher amount of other ginsenosides than its parents. Conclusion: Micropropagation of interspecific hybrid ginseng can give an opportunity for continuous production of plants.

Uptake and Distribution of Bisphenol A and Its Metabolites in Lettuce Grown in Sandy Loam and Loam Soil

  • Cho, Il Kyu;Jeon, Yong-Bae;Oh, Young Goun;Rahman, Md. Musfiqur;Kim, Won-Il;Lee, Young-Deuk
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.4
    • /
    • pp.375-383
    • /
    • 2020
  • BACKGROUND: Bisphenol A (BPA) is a chemical widely used in polycarbonate plastics, epoxy resins. BPA is an endocrine disruptor. Residue of BPA in agricultural environments is a major concern. The objective of this study was to understand the characteristics of the uptake and distribution of BPA and its metabolites introduced into the agricultural environment to crops, and to use it as basic data for further research on reduction of BPA in agricultural products. METHODS AND RESULTS: This study established the analysis method of BPA and its metabolites in soil and crops, and estimated the intake of BPA and its metabolites from lettuce (Lactuca sativa) grown in sandy loam and loam soil, which are representative soils in Korea. The two major metabolites of BPA were 4-hydroxyacetophenone (4-HAP) and 4-hydroxybenzoic acid (4-HBA). BPA, 4-HAP and 4-HBA have been analyzed by using liquid chromatography tandem mass spectrometry (LC-MS/MS). These substances were detected in sandy loam and loam soil, indicating that certain portions of BPA were converted to 4-HAP and 4-HBA in the soil; however, it was observed that only 4-HBA migrated to lettuce through the roots into crops. CONCLUSION: The uptake residues showed the BPA and 4-HAP were not detected in lettuces grown on sandy loam (SL) and loam (L) soil treatments that were applied with of 10 ng/g, 50 ng/kg and 500 ng/g of BPA. However, the 4-HBA was detected at the level of 7 ng/g and 11 ng/g in the lettuce grown in sandy loam and loam soil that were treated with the 500 ng/g of BPA, respectively, while the 8 ng/g of 4-HBA was measured in the lettuce cultivated in the loam that was treated with 100 ng/g of BPA. This result presents that the BPA persisting in the soil of the pot was absorbed through the lettuce roots and then distributed in the lettuce leaves at the converted form of 4-HBA, what is the oxidative metabolite of BPA.

Gintonin facilitates brain delivery of donepezil, a therapeutic drug for Alzheimer disease, through lysophosphatidic acid 1/3 and vascular endothelial growth factor receptors

  • Choi, Sun-Hye;Lee, Na-Eun;Cho, Hee-Jung;Lee, Ra Mi;Rhim, Hyewhon;Kim, Hyoung-Chun;Han, Mun;Lee, Eun-Hee;Park, Juyoung;Kim, Jeong Nam;Kim, Byung Joo;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.264-272
    • /
    • 2021
  • Background: Gintonin is a ginseng-derived exogenous G-protein-coupled lysophosphatidic acid (LPA) receptor ligand, which exhibits in vitro and in vivo functions against Alzheimer disease (AD) through lysophosphatidic acid 1/3 receptors. A recent study demonstrated that systemic treatment with gintonin enhances paracellular permeability of the blood-brain barrier (BBB) through the LPA1/3 receptor. However, little is known about whether gintonin can enhance brain delivery of donepezil (DPZ) (Aricept), which is a representative cognition-improving drug used in AD clinics. In the present study, we examined whether systemic administration of gintonin can stimulate brain delivery of DPZ. Methods: We administered gintonin and DPZ alone or coadministered gintonin with DPZ intravenously or orally to rats. Then we collected the cerebral spinal fluid (CSF) and serum and determined the DPZ concentration through liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Results: Intravenous, but not oral, coadministration of gintonin with DPZ increased the CSF concentration of DPZ in a concentration- and time-dependent manner. Gintonin-mediated enhancement of brain delivery of DPZ was blocked by Ki16425, a LPA1/3 receptor antagonist. Coadministration of vascular endothelial growth factor (VEGF) + gintonin with DPZ similarly increased CSF DPZ concentration. However, gintonin-mediated enhancement of brain delivery of DPZ was blocked by axitinip, a VEGF receptor antagonist. Mannitol, a BBB disrupting agent that increases the BBB permeability, enhanced gintonin-mediated enhancement of brain delivery of DPZ. Conclusions: We found that intravenous, but not oral, coadministration of gintonin facilitates brain delivery of DPZ from plasma via LPA1/3 and VEGF receptors. Gintonin is a potential candidate as a ginseng-derived novel agent for the brain delivery of DPZ for treatment of patients with AD.

Cardioprotective effect of ginsenoside Rb1 via regulating metabolomics profiling and AMP-activated protein kinase-dependent mitophagy

  • Hu, Jingui;Zhang, Ling;Fu, Fei;Lai, Qiong;Zhang, Lu;Liu, Tao;Yu, Boyang;Kou, Junping;Li, Fang
    • Journal of Ginseng Research
    • /
    • v.46 no.2
    • /
    • pp.255-265
    • /
    • 2022
  • Background: Ginsenoside Rb1, a bioactive component isolated from the Panax ginseng, acts as a remedy to prevent myocardial injury. However, it is obscure whether the cardioprotective functions of Rb1 are related to the regulation of endogenous metabolites, and its potential molecular mechanism still needs further clarification, especially from a comprehensive metabolomics profiling perspective. Methods: The mice model of acute myocardial ischemia (AMI) and oxygen glucose deprivation (OGD)-induced cardiomyocytes injury were applied to explore the protective effect and mechanism of Rb1. Meanwhile, the comprehensive metabolomics profiling was conducted by high-performance liquid chromatography and quadrupole time-of-flight mass spectrometry (HPLC-Q/TOF-MS) and a tandem liquid chromatography and mass spectrometry (LC-MS). Results: Rb1 treatment profoundly reduced the infarct size and attenuated myocardial injury. The metabolic network map of 65 differential endogenous metabolites was constructed and provided a new inspiration for the treatment of AMI by Rb1, which was mainly associated with mitophagy. In vivo and in vitro experiments, Rb1 was found to improve mitochondrial morphology, mitochondrial function and promote mitophagy. Interestingly, the mitophagy inhibitor partly attenuated the cardioprotective effect of Rb1. Additionally, Rb1 markedly facilitated the phosphorylation of AMP-activated protein kinase α (AMPKα), and AMPK inhibition partially weakened the role of Rb1 in promoting mitophagy. Conclusions: Ginsenoside Rb1 protects acute myocardial ischemia injury through promoting mitophagy via AMPKα phosphorylation, which might lay the foundation for the further application of Rb1 in cardiovascular diseases.