• Title/Summary/Keyword: LBA4404

Search Result 92, Processing Time 0.03 seconds

Efficient Transformation of Trifolium repens L. Using Acetosyringone (Acetosyringone을 이용한 효율적인 White Clover의 형질전환)

  • TaeHoKwon
    • Korean Journal of Plant Resources
    • /
    • v.10 no.2
    • /
    • pp.107-113
    • /
    • 1997
  • Transformants of White Clover(Trifolium repens L.) were efficiently produced from immature seed derived callus cocultivated with Agrobacterium twnefaciens LBA4404 harboring plant binary vector. pBI121, using acetosyringone. The mean frequencies of transformants on the two kanamycin-containing media were 16 to 19% when the immature seed-derived calli were infected with bacteria cultured in the presence of 100$\mu$M acetosyringone compared with 7% in media without acetosyringone. Transgenic white clover was subject to molecular analysis for integration into plant nuclear genome and expression of $\beta$-glucuronidase(GUS) gene. PCR and Northern blot analyses demonstrated that GUS gene was integrated into white clover nuclear genome and expressed into its mRNA. The expression of GUS gene into its protein was confirmed by spectrophotometric assay of GUS activity.

  • PDF

Transformation of A Plant by Ascorbate Peroxidase Gene using Agrobacterium tumefaciens (Ascorbate Peroxidase 유전자의 도입에 의한 식물의 형질전환)

  • 이인애;이효신;배은경;김기용;이병현;손대영;조진기
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.22 no.2
    • /
    • pp.101-106
    • /
    • 2002
  • This study was conducted to obtain the transformed tobacco (Nicotiana tubacum) plants with cytosolic ascorbate peroxidase gene(ApxSC7) using Agrobacterium tumefaciens LBA4404. A cDNA encoding the cytosolic ascorbate peroxidase of strawberry, ApxSC7, was introduced into tobacco plants via Agrobacterium-mediated gene transfer system. The expression vector, pIG-AP8, harboring ApxSC7 gene was used for production of transgenic tobacco plants. A large number of transgenic plants were regenerated on a medium containing hygromycin. Integration of ApxSC7 gene was confirmed by PCR and Southern blot analyses with genomic DNA. Northern blot analyses revealed that the pIGap8 gene was constitutively expressed.

Sodium Hypochlorite Solution As a Chemical Wounding Agent for Improving Agrobacterium-mediated Chinese Cabbage Seed Transformation (Sodium hypochlorite처리에 따른 배추종자의 Agrobacterium이용 형질전환 증대)

  • Shin Dong-Il;Park Hee-Sung
    • Journal of Life Science
    • /
    • v.15 no.6 s.73
    • /
    • pp.1034-1036
    • /
    • 2005
  • Chinese cabbage (Brassica campestris ssp. napus var. pekinensis Makino) seeds/seedlings were transformed via vacuum-infiltration with recombinant Agrobacterium tumefaciens LBA4404 cells. The agroinfiltration method was determined to be unsuccessful for Chinese cabbage transformation during the analysis of hepatitis B surface antigen expression by ELISA. However, treatment of sodium hypochlorite solution, prior to agroinfiltration, to pregerminated or germinating 1 day- or 2 days-old seeds was proven effectively to enhance transformation efficiency, suggesting that chemical wounding caused by sodium hypochlorite reaction might facilitate Agrobacterium infection and, therefore, transient gene expression in Chinese cabbage sprouts.

Agrobacterium-Mediated Transformation on a Plant with Saccharomyces cerevisiae Acid Phosphatse Gene(PHO5) (Agrobacterium을 이용한 Saccharomyces cerevisiae Acid Phosphatse 유전자 (PHO5) 의 식물체로의 도입)

  • Ki yong Kim;Dae yuong Son;Yong Gu Park;Won Il Jung;Jin Ki Jo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.13 no.3
    • /
    • pp.177-183
    • /
    • 1993
  • This study was conducted to obtain the transformed tobacco plants with S. cerevisiae Acid phosphatase gene(PH05) using Agrobacterium tumefaciens and th confirm plant transformation and gene expression. the results obtained were summarized as follows: APase activity of Saccharomyces cereviase NA 87-11A was remarkably showed up as deep red color when assayed by Tohe and Oshima(1974). PH05 fragment, Apase gene, was obtained from pVC727G and the graphically estimated size was about 1.5kb by agarose gel electrophoresis. The sequencing results of 5'end and 3'end of PH05 using dideoxy chain termination method were coinsided with the full length nucleotide already. pBKJ I vector was constructed by isolation of PH05 fragment from pVC727-1 and pBKSI-1 digesred with Sma I and Xba I. Isolated plasmid from transformed A. tumefaciens with constructed pBKJ I when it was electrophoresed with agarose gel. The dosc of tobacco leaf was cocultivated 재소 transformed Agronacterium tumefaciens. Transformed shoots were selected on kanamtcin-containing MS-n/B medium and they were regenerated. The transgenic tobacco plants were elucidated by isolation of genomic DNA and genomic southern hybridization using ${\alpha}-^{32}P$ labelled PH05 fragments. The PH05 in transformed tobacco plants was expressed in leaf, stem and root, and its APase activity was estimated as deep red color by Tohe method.

  • PDF

Transfer and Expression of a Tomato Inhibitor II and $\beta$-Glucuronidae Fusion Gene in Flowering Cabbage, Brassica oleracea var. acephala DC. (꽃양배추로의 프로타제 저해제 II와 $\beta$-Glucuronidase 융합 유전자의 도입 및 발현)

  • 김창길;정재동;안진흥;김경민
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.1
    • /
    • pp.37-43
    • /
    • 1998
  • The highest transformation frequency was observed when cotyledonary and hypocotyl explants of flowering cabbage (Brassica oleracea var. acephala DC) 'Eunbae' were cultured on shoot induction medium without kanamycin for 1 day, then cocultured with Agrobacterium tumefaciens LBA4404;;pGA1036 harboring tomato inhibitor II promoter and $\beta$-glucuronidae (GUS) fusion gene for 3 days. These explants were transferred to MS medium containing 20 mg/L kanamycin, 500 mg/L carbenicillin, and 1 mg/L BA. The explants were subsequently subcultured every 2 weeks. Incorporation of the GUS gene into flowering cabbage was confirmed by PCR analysis of DNA. Southern blot analysis showed that ECL-labeled GUS gene was hybridized to the expected amplified genomic DNA fragment of about 366 bp from transgenic flowering cabbage. Histochemical analysis based on the enzymatic activity of the GUS protein indicated that PI-II promoter activity was sysmatically associated with vascular tissue in wonded as well as in non-wounded leaves, petioles and stems, but not in roots. Partial wounding with razor blade showed not systemic induction but partial induction.

  • PDF

Gene Transformation of Ailanthus altissima Swingle by Agrobacterium tumefaciens (외래유전자(外來遺傳子)에 의(依)한 가중나무의 형질전환(形質轉換))

  • Park, Young Goo;Huh, Kyung;Choi, Myung Suk
    • Current Research on Agriculture and Life Sciences
    • /
    • v.10
    • /
    • pp.137-145
    • /
    • 1992
  • An efficient transformation system was established for Ailanthus altissima utilizing the binary system of A. tumefaciens strain LBA4404. Callus was initiated from small portions of cambium tissue of A. altissima in vitro. Optimum regeneration was achieved with Murashige and Skoog(MS) medium containing 0.01mg/${\ell}$ 2, 4-D, 0.5mg/${\ell}$ BAP, 3%(w/v) sucrose and 0.75% agar. The multiplication of explants remarkably showed up on medium containing 1.0mg/${\ell}$ BAP. Leaf discs or internodal stem segments were inoculated with A. tumefaciens strain LBA 4404 containing the binary vector pPMB 101, which has both ${\beta}$-glucuronidase (GUS) marker gene and neomycin phosphotransferase II (NPT II) gene. Shoots had been regenerated from 24 lines out of inoculative 50 lines. Transformants were selected by their ability to grow on medium containing kanamycin sulphate (100mg/${\ell}$). Putative transformation was confirmed by GUS assays. Five GUS-positive plantlets were obtained which confirmed that this marker gene has been transferred into A. altissima.

  • PDF

Production of Herbicide-resistant Transgenic Plants from Embryogenic Suspension Cultures of Cucumber (오이의 배발생 현탁 배양세포로부터 제초제 저항성 형질전환 식물체 생산)

  • 우제욱;정원중;최관삼;박효근;백남긴;유장렬
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.1
    • /
    • pp.53-58
    • /
    • 2001
  • To develop herbicide-resistant cucumber plants (Cucumis sativus L. cv Green Angle) embryogenic suspension cultures were co-cultured with Agrobacterium tumefaciens strain LBA4404 carrying a disarmed binary vector pGA-bar. The T-DNA region of this binary vector contains the nopalin synthase/neomycin phosphotransferase Ⅱ (npt Ⅱ) chimeric gene for kanamycin resistance and the cauliflower 35S/phosphinothricin acetyltransferase (bar) chimeric gene for phosphinothricin (PPT) resistance, After co-cultivation for 48 h, embryogenic calli were placed on maturation media containing 20 mg/L PPT. Approximately 200 putatively transgenic plantlets were obtained in hormone free media containing 40 mg/L PPT. Northern blot hybridization analysis confirmed the expression of the bar gene that was integrated into the genome of five transgenic plants. Transgenic cucumber plants were grown to maturity. Mature plants in soil showed tolerance to the commercial herbicide (Basta) of PPT at the manufacturer's suggested level (3 mL/L).

  • PDF

GUS gene expression and plant regeneration via co-culturing with Agrobacterium in grapevine (Vitis vinifera) (Agrobacterium 공동배양을 이용한 포도 재분화율 향상과 GUS 유전자의 발현)

  • Kim, Se-Hee;Kim, Jeong-Hee;Kim, Ki-Ok;Do, Gyeong-Ran;Shin, Il-Sheob;Cho, Kang-Hee;Hwang, Hae-Seong
    • Journal of Plant Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.308-314
    • /
    • 2011
  • Efficient transformation and regeneration methods are a priority for successful application of genetic engineering to vegetative propagated plants such as grape. In this study, methods for Agrobacterium tumefaciens-mediated transformation and plant regeneration of grapevine (Vitis vinifera) were evaluated. Tamnara, Heukgoosul, Heukbosek, Rizamat were co-cultivated with Agrobacterium strains, LBA4404 containing the vector pBI121 carrying with CaMV 35S promoter, GUS gene as reporter gene and resistance to kanamycin as selective agent. Seven percent of the maximum regeneration frequency was obtained from co-cultivated with explants from Rizamat with LBA4404 strain on selection medium with kanamycin. The addition of acetosyringone, 200 ${\mu}m$ in virulence induction step was a key factor for successful GUS reporter gene expression in grapevine transformation. Transgenic plants showed resistance to kanamycin and the GUS positive response in leaf ($T_0$) stem ($T_0$) and petiole ($T_0$).

Transformation of Arabidopsis gamma-Tocopherol Methyltransferase into Lettuce (Lactuca sativa L.) (애기장대 gamma-Tocopherol Methyltransferase 유전자를 이용한 상추의 형질전환)

  • 김명준;백소현;유남희;윤성중
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.6
    • /
    • pp.435-439
    • /
    • 2000
  • Explants of lettuce (Lactuca sativa L.) were cocultured with A. tumefaciens LBA 4404 harboring ${\gamma}$-tocopherol methyltransferase (${\gamma}$-TMT) gene from Arabidopsis thaliana. These explants were transferred to MS medium supplemented with 50 mg/L kanamycin, 500 mg/L carbenicillin, 0.1 mg/L NAA and 0.5 mg/L BA. After 4 weeks, kanamycin resistant shoots were obtained from the explants on the selection medium. The putative transgenic shoots were transferred to rooting MS medium supplemented with 50 mg/L kanamycin and 250 mg/L carbenicillin. Stable incorporation of the Arabidopsis ${\gamma}$-TMT cDNA into lettuce genomic DNA was confirmed by PCR and Southern analysis. HPLC analysis showed that $\alpha$- to ${\gamma}$-tocopherol ratio increased over four fold in a transgenic lettuce line indicating successful expression of the transgenic Arabidopsis ${\gamma}$-TMT in lettuce.

  • PDF

Transformation of Rice (Oryza sativa L.) with Phosphate Transporter cDNA from Tobacco (Nicotiana tabacum L.) (담배 인산수송자 유전자를 이용한 벼의 형질전환)

  • 유남희;윤성중
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.6
    • /
    • pp.441-445
    • /
    • 2000
  • In order to improve phosphate use efficiency of rice using phosphate transporter (PT), transgenic rice plants containing a tobacco PT gene were developed. Calli from Dongjinbyeo (Oryza sativa L.) were cocultured with A. tumefaciens LBA 4404 harboring PT gene. Multiplied calli were transferred to MS medium supplemented with 50 mg/L hygromycin, 500 mg/L carbenicillin, 2 mg/L kinetin, 0.1 mg/L NAA. After 2 weeks, hygromycin resistant shoots were obtained from the calli on the selection medium. The putative transgenic shoots were transferred to rooting MS medium supplemented with 250 mg/L cabenicillin. Plant regeneration rate from the calli was about 52%. Stable incorporation of the tobacco PT gene into rice genomic DNA was confirmed by PCR and Southern blot analysis.

  • PDF