• Title/Summary/Keyword: LAND COVER

Search Result 1,418, Processing Time 0.027 seconds

Application and Usability Analysis of Local Climate Zone using Land-Use/Land-Cover(LULC) Data (토지이용/피복(LULC) 데이터를 이용한 도시기후구역의 적용가능성 분석)

  • Seung-Won KANG;Han-Sol MUN;Hye-Min PARK;Ju-Chul JUNG
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.1
    • /
    • pp.69-88
    • /
    • 2023
  • Efficient spatial planning is one of the necessary factors to successfully respond to climate change. And researchers often use LULC(Land-Use/Cover) data to conduct land use and spatial planning research. However, LULC data has a limited number of grades related to urban surface, so each different urban structure appearing in several cities is not easily analyzed with existing land cover products. This limitation of land cover data seems to be overcome through LCZ(Local Climate Zone) data used in the urban heat island field. Therefore, this study aims to first discuss whether LCZ data can be applied not only to urban heat island fields but also to other fields, and secondly, whether LCZ data still have problems with existing LULC data. Research methodology is largely divided into two categories. First, through literature review, studies in the fields of climate, land use, and urban spatial structure related to LCZ are synthesized to analyze what research LCZ data is currently being used, and how it can be applied and utilized in the fields of land use and urban spatial structure. Next, the GIS spatial analysis methodology is used to analyze whether LCZ still has several errors that are found in the LULC.

Hierarchical Land Cover Classification using IKONOS and AIRSAR Images (IKONOS와 AIRSAR 영상을 이용한 계층적 토지 피복 분류)

  • Yeom, Jun-Ho;Lee, Jeong-Ho;Kim, Duk-Jin;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.4
    • /
    • pp.435-444
    • /
    • 2011
  • The land cover map derived from spectral features of high resolution optical images has low spectral resolution and heterogeneity in the same land cover class. For this reason, despite the same land cover class, the land cover can be classified into various land cover classes especially in vegetation area. In order to overcome these problems, detailed vegetation classification is applied to optical satellite image and SAR(Synthetic Aperture Radar) integrated data in vegetation area which is the result of pre-classification from optical image. The pre-classification and vegetation classification were performed with MLC(Maximum Likelihood Classification) method. The hierarchical land cover classification was proposed from fusion of detailed vegetation classes and non-vegetation classes of pre-classification. We can verify the facts that the proposed method has higher accuracy than not only general SAR data and GLCM(Gray Level Co-occurrence Matrix) texture integrated methods but also hierarchical GLCM integrated method. Especially the proposed method has high accuracy with respect to both vegetation and non-vegetation classification.

A Case Study of Land-cover Classification Based on Multi-resolution Data Fusion of MODIS and Landsat Satellite Images (MODIS 및 Landsat 위성영상의 다중 해상도 자료 융합 기반 토지 피복 분류의 사례 연구)

  • Kim, Yeseul
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1035-1046
    • /
    • 2022
  • This study evaluated the applicability of multi-resolution data fusion for land-cover classification. In the applicability evaluation, a spatial time-series geostatistical deconvolution/fusion model (STGDFM) was applied as a multi-resolution data fusion model. The study area was selected as some agricultural lands in Iowa State, United States. As input data for multi-resolution data fusion, Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat satellite images were used considering the landscape of study area. Based on this, synthetic Landsat images were generated at the missing date of Landsat images by applying STGDFM. Then, land-cover classification was performed using both the acquired Landsat images and the STGDFM fusion results as input data. In particular, to evaluate the applicability of multi-resolution data fusion, two classification results using only Landsat images and using both Landsat images and fusion results were compared and evaluated. As a result, in the classification result using only Landsat images, the mixed patterns were prominent in the corn and soybean cultivation areas, which are the main land-cover type in study area. In addition, the mixed patterns between land-cover types of vegetation such as hay and grain areas and grass areas were presented to be large. On the other hand, in the classification result using both Landsat images and fusion results, these mixed patterns between land-cover types of vegetation as well as corn and soybean were greatly alleviated. Due to this, the classification accuracy was improved by about 20%p in the classification result using both Landsat images and fusion results. It was considered that the missing of the Landsat images could be compensated for by reflecting the time-series spectral information of the MODIS images in the fusion results through STGDFM. This study confirmed that multi-resolution data fusion can be effectively applied to land-cover classification.

Crop Field Extraction Method using NDVI and Texture from Landsat TM Images

  • Shibasaki, Ryosuke;Suzaki, Junichi
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.159-162
    • /
    • 1998
  • Land cover and land use classification on a huge scale, e.g. national or continental scale, has become more and more important because environmental researches need land cover: And land use data on such scales. We developed a crop field extraction method, which is one of the steps in our land cover classification system for a huge area. Firstly, a crop field model is defined to characterize "crop field" in terms of NDVI value and textual information Textual information is represented by the density of straight lines which are extracted by wavelet transform. Secondly, candidates of NDVI threshold value are determined by "scale-space filtering" method. The most appropriate threshold value among the candidates is determined by evaluating the line density of the area extracted by the threshold value. Finally, the crop field is extracted by applying level slicing to Landsat TM image with the threshold value determined above. The experiment demonstrates that the extracted area by this method coincides very well with the one extracted by visual interpretation.

  • PDF

High-resolution Land Cover Mapping of Rural Area Using IKONOS Imagery (IKONOS 영상을 이용한 고해상도 토지피복도 작성)

  • Hong, Seong Min;Jung, In Kyun;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1271-1275
    • /
    • 2004
  • The purpose of this study is to present a standardized scheme for providing agriculture-related information at various spatial resolutions of satellite images including Landsat +ETM, KOMPSAT-1 EOC, ASTER VNIR, and IKONOS panchromatic and multi-spectral images. The satellite images were interpreted especially for identifying agricultural areas, crop types, agricultural facilities and structures. The results were compared with the land cover/land use classification system suggested by Ministry of Construction & Transportation based on NGIS (National Geographic Information System) and Ministry of Environment based on satellite remote sensing data. As a result, high-resolution agricultural land cover map from IKONOS imageries was made out. The results by IKONOS image will be provided to KOMPSAT-2 project for agricultural application.

  • PDF

Standardizing Agriculture-related Land Cover Classification Scheme Using IKONOS Satellite Imagery (IKONOS 영상자료를 이용한 농업관련 토지피복 분류기준 설정 연구)

  • 홍성민;정인균;김성준
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.261-265
    • /
    • 2004
  • The purpose of this study is to present a standardized scheme for providing agriculture-related information at various spatial resolutions of satellite images including Landsat+ETM, KOMPSAT-1 EOC, ASTER VNIR, and IKONOS panchromatic and multi-spectral images. The satellite images were interpreted especially for identifying agricultural areas, crop types, agricultural facilities and structures. The results were compared with the land cover/land use classification system suggested by Ministry of Construction & Transportation based on NGIS (National Geographic Information System) and Ministry of Environment based on satellite remote sensing data. As a result, high-resolution agricultural land cover map from IKONOS imageries was made out. The results by IKONOS image will be provided to KOMPSAT-2 project for agricultural application.

  • PDF

Application of Multi-periodic Harmonic Model for Classification of Multi-temporal Satellite Data: MODIS and GOCI Imagery

  • Jung, Myunghee;Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.573-587
    • /
    • 2019
  • A multi-temporal approach using remotely sensed time series data obtained over multiple years is a very useful method for monitoring land covers and land-cover changes. While spectral-based methods at any particular time limits the application utility due to instability of the quality of data obtained at that time, the approach based on the temporal profile can produce more accurate results since data is analyzed from a long-term perspective rather than on one point in time. In this study, a multi-temporal approach applying a multi-periodic harmonic model is proposed for classification of remotely sensed data. A harmonic model characterizes the seasonal variation of a time series by four parameters: average level, frequency, phase, and amplitude. The availability of high-quality data is very important for multi-temporal analysis.An satellite image usually have many unobserved data and bad-quality data due to the influence of observation environment and sensing system, which impede the analysis and might possibly produce inaccurate results. Harmonic analysis is also very useful for real-time data reconstruction. Multi-periodic harmonic model is applied to the reconstructed data to classify land covers and monitor land-cover change by tracking the temporal profiles. The proposed method is tested with the MODIS and GOCI NDVI time series over the Korean Peninsula for 5 years from 2012 to 2016. The results show that the multi-periodic harmonic model has a great potential for classification of land-cover types and monitoring of land-cover changes through characterizing annual temporal dynamics.

Method for Calculating the Pollution Load Amount of Agricultural Non-Point Sources Using Land Cover Map (토지피복지도를 활용한 농업비점오염원 오염부하량 산정에 관한 연구)

  • Yu, Jieun;Kim, Yoonji;Sung, Hyun-Chan;Lee, Kyung-il;Choi, Ji-yong;Jeon, Seung-woo
    • Journal of Environmental Science International
    • /
    • v.29 no.12
    • /
    • pp.1249-1260
    • /
    • 2020
  • Non-point source pollutants have characteristics the render them difficult to manage owing to the uncertainty of flow paths. As agricultural non-point sources account for more than 57% of non-point source pollutants, the necessity for management is increasing. This study examines the possibility of utilizing land cover maps to suggest a more appropriate method of setting management priority for agricultural non-point sources in the Daecheong Lake area and draws implications by comparing the results derived using the cadastral map, as mentioned in the TMDL Basic Policy. To define the prioritized areas for management, the pollution load was calculated for each subbasin using the formula from the TMDL technical guidelines. As a result, the difference in the average pollution load between the land cover map and cadastral map ranged from 11.6% to 21% among the subbasins. In almost all subbasins, there were differences in the ranking of management priorities depending on the land information that was used. In addition, it was found that it was reasonable to use the level 3 land cover map to calculate the load generated by the land system for examining the implementation goals and methods of each data and comparing them with satellite images.

Matching Size Determination According to Land Cover Property of IKONOS Stereo Imagery (IKONOS 입체영상의 토지피복 특성에 따른 정합영역 크기 결정)

  • Lee, Hyo-Seong;Park, Byung-Uk;Lee, Byung-Gil;Ahn, Ki-Weon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_2
    • /
    • pp.587-597
    • /
    • 2007
  • This study determines matching size for digital elevation model (DEM) production according to land cover property from IKONOS Geo-level stereo image. We applied area based matching method using correlation coefficient of pixel brightness value between the two images. After matching line (where "matching line" implies straight line that is approximated to complex non-linear epipolar geometry) is established by exterior orientation parameters to minimize search area, the matching is carried out based on this line. The experiment is performed according to land cover property, which is divided off into four areas (water, urban land, forest land and agricultural land). In each of the test areas, matching size is selected using a correlation-coefficient image and parallax image. As the results, optimum matching size of the images was selected as $81{\times}81$ pixels window, $21{\times}21$ pixels window, $119{\times}119$ pixels window and $51{\times}51$ pixels window in the water area, urban land, forest land and agricultural land, respectively.

Review of Land Cover Classification Potential in River Spaces Using Satellite Imagery and Deep Learning-Based Image Training Method (딥 러닝 기반 이미지 트레이닝을 활용한 하천 공간 내 피복 분류 가능성 검토)

  • Woochul, Kang;Eun-kyung, Jang
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.4
    • /
    • pp.218-227
    • /
    • 2022
  • This study attempted classification through deep learning-based image training for land cover classification in river spaces which is one of the important data for efficient river management. For this purpose, land cover classification analysis with the RGB image of the target section based on the category classification index of major land cover map was conducted by using the learning outcomes from the result of labeling. In addition, land cover classification of the river spaces was performed by unsupervised and supervised classification from Sentinel-2 satellite images provided in an open format, and this was compared with the results of deep learning-based image classification. As a result of the analysis, it showed more accurate prediction results compared to unsupervised classification results, and it presented significantly improved classification results in the case of high-resolution images. The result of this study showed the possibility of classifying water areas and wetlands in the river spaces, and if additional research is performed in the future, the deep learning based image train method for the land cover classification could be used for river management.