• Title/Summary/Keyword: LAMBDA method

Search Result 524, Processing Time 0.027 seconds

Luminescence characterization of $EU^{3+}$ and $Bi^{3+}$ co-doped in ${Y_2}{SiO_5}$ red emitting phosphor by solid state reaction method (고상 반응법으로 합성한 ${Y_2}{SiO_5}:\;EU^{3+}$, $Bi^{3+}$ 적색 형광체의 발광 특성)

  • Moon, J.W.;Song, Y.H.;Park, W.J.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.1
    • /
    • pp.15-18
    • /
    • 2009
  • To enhance near UV-visible absorption region and to applied phosphor convert-white LEOs (PC-WLEDs), a red phosphor composed of ${Y_2}{SiO_5}:\;EU^{3+}$, $Bi^{3+}$ compounds was prepared by the conventional solid-state reaction. The photoluminescence (PL) shown that samples were excited by near UV light 395 nm for measurement of PL spectra. Emission spectra of samples have shown red emissions at 612 nm ($^5D_0{\to}^7F_2$). The enhanced near $UV{\sim}$ visible excitation spectrum with a broad band centered at 258 nm and 282 nm originated in the transitions toward the charge transfer state (CTS) due to the $Eu^{3+}-Bi^{3+}-O^{2-}$ interaction. The other excitation band at $350\;nm{\sim}480\;nm$, corresponding to the transitions $^7F_0{\to}^5L_9$ (364 nm), $^7F_0{\to}^5G_3$ (381 nm), $^7F_0{\to}^5L_6$ (395 nm), $^7F_0{\to}^5D_3$, (415 nm) and $^7F_0{\to}^5D_2$ (466 nm), occurred due to enhanced the f-f transition increasing $Bi^{3+}$ and $Eu^{3+}$ ions. The PL intensity increased with increased as concentration of $Bi^{3+}$ and the emission intensity becomes with a maximum at 0.125 mol.

Detection of Clavibacter michiganensis subsp. michiganensis Assisted by Micro-Raman Spectroscopy under Laboratory Conditions

  • Perez, Moises Roberto Vallejo;Contreras, Hugo Ricardo Navarro;Herrera, Jesus A. Sosa;Avila, Jose Pablo Lara;Tobias, Hugo Magdaleno Ramirez;Martinez, Fernando Diaz-Barriga;Ramirez, Rogelio Flores;Vazquez, Angel Gabriel Rodriguez
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.381-392
    • /
    • 2018
  • Clavibacter michiganensis subsp. michiganesis (Cmm) is a quarantine-worthy pest in $M{\acute{e}}xico$. The implementation and validation of new technologies is necessary to reduce the time for bacterial detection in laboratory conditions and Raman spectroscopy is an ambitious technology that has all of the features needed to characterize and identify bacteria. Under controlled conditions a contagion process was induced with Cmm, the disease epidemiology was monitored. Micro-Raman spectroscopy ($532nm\;{\lambda}$ laser) technique was evaluated its performance at assisting on Cmm detection through its characteristic Raman spectrum fingerprint. Our experiment was conducted with tomato plants in a completely randomized block experimental design (13 plants ${\times}$ 4 rows). The Cmm infection was confirmed by 16S rDNA and plants showed symptoms from 48 to 72 h after inoculation, the evolution of the incidence and severity on plant population varied over time and it kept an aggregated spatial pattern. The contagion process reached 79% just 24 days after the epidemic was induced. Micro-Raman spectroscopy proved its speed, efficiency and usefulness as a non-destructive method for the preliminary detection of Cmm. Carotenoid specific bands with wavelengths at 1146 and $1510cm^{-1}$ were the distinguishable markers. Chemometric analyses showed the best performance by the implementation of PCA-LDA supervised classification algorithms applied over Raman spectrum data with 100% of performance in metrics of classifiers (sensitivity, specificity, accuracy, negative and positive predictive value) that allowed us to differentiate Cmm from other endophytic bacteria (Bacillus and Pantoea). The unsupervised KMeans algorithm showed good performance (100, 96, 98, 91 y 100%, respectively).

Fluorescence Detection for Protoporphyrin IX Induced from 5-ALA and ALA-methyl ester in Incubated Liver Cancer Cells (간암 세포주에서 5-ALA 및 ALA-methyl ester에 의해 유도된 Protoporphyrin IX의 형광 검출)

  • Kim, Myung-Hwa;Kim, Jung-Mi;Kim, Hyun-Jeong;Lee, In-Seon;Kim, Kyung-Chan;Lee, Chang-Seop
    • KSBB Journal
    • /
    • v.22 no.3
    • /
    • pp.168-173
    • /
    • 2007
  • To clarify the usefulness of fluorescent diagnosis for cancer, we investigated the optimal method of administrating 5-aminolevulinic acid (5-ALA), 5-aminolevulinic acid methyl ester (ALA-methyl ester) by analyzing fluorescence signal of Protoporphyrin IX (PpIX) in the cultured normal and cancer cells. 5-ALA and ALA-methyl ester was injected as a photosensitizer to the cancer liver cells (HepG2) and normal liver cells (Chang). Chang and HepG2 cells were incubated with various concentrations of 5-ALA and ALA-methyl ester (0-800 ${\mu}g/mL$). The accumulation of PpIX induced by 5-ALA and ALA-methyl ester was in HepG2 and Chang. The cell viability was measured by MTT assay. Fluorescence of PpIX in HepG2 cell was excited at a wavelength ($\lambda$ = 410 nm) and showed an emission spectrum at 603.2 nm, 660.8 nm and 603.2 nm, 661.4 nm which could be related to the PpIX generation induced by the applied 5-ALA and ALA-methyl ester, respectively. The experimental results showed that fluorescence signal of PpIX was proportional to the concentration of 5-ALA and ALA-methyl ester in tumor cells, but measured with low concentration in normal cells. Another results showed that the PpIX formation rate induced by ALA-methyl ester is higher than that of 5-ALA.

Measurement of Dynamic Stability Derivatives of Tailless Lamda-shape UAV using Forced Oscillation Method (강제진동 기법을 이용한 무미익 비행체의 동안정 미계수 측정)

  • Yang, Kwangjin;Chung, Hyoungseog;Cho, Donghyun;An, Eunhye;Ko, Joonsoo;Hong, JinSung;Kim, Yongduk;Lee, MyungSup;Hur, Gi-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.7
    • /
    • pp.552-561
    • /
    • 2016
  • In this experimental study, the dynamic stability derivatives of a tailless lambda-shape UAV are estimated from time history data of aerodynamic moments measured from the internal balance while the test model is forced to oscillate at given frequencies and amplitudes. A 3-axis forced oscillation apparatus is designed to induce decoupled roll, yaw, pitch oscillations respectively. The results show that the roll damping derivatives remain stable at the entire range of angle of attack tested, whereas the pitch damping derivatives become unstable beyond $15^{\circ}$ angle of attack. The amplitude and frequency have little impact on roll damping derivatives while the smaller amplitude and frequency of oscillation improves the pitch stability. The yaw damping derivative values are fairly small as expected for a tailless configuration. The results indicate that the proposed methodology and test apparatus area valid for estimating the dynamic stability derivatives of a tailless UAV.

Miniaturization and Transmission Efficiency Improvement of Resonant Aperture Structure (공진 개구 구조의 소형화 및 투과 효율 개선)

  • Yoo, Jong-Gyeong;Yeo, Junho;Ko, Ji-Whan;Kim, Byung-Mun;Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.6
    • /
    • pp.470-477
    • /
    • 2017
  • As a method of the transmission efficiency improvement of an aperture smaller than the wavelength, we modified the conventional H-shaped resonant aperture to lower the resonance frequency of resonant aperture, and the transmission efficiency of resonant aperture was improved more than the conventional aperture. The maximum transmission cross section(TCS) calculated using the equivalent circuit tends to be almost equal to the maximum TCS from the small resonant aperture modified to improve the transmission efficiency. The transmission characteristics of resonant apertures can be quantified as the TCS, and the transmission efficiency of that can be compared. The modified resonant aperture has a maximum TCS increased by about 2.87 times from $846mm^2$ to $2,431mm^2$ compared to the H-shaped aperture, and the resonant frequency decreased from 5.06 GHz to 2.92 GHz, and the length-to-wavelength ratio of the aperture was reduced from 0.178 to 0.103.

In Vitro Study of Fluorescence Detection for Protoporphyrin IX Induced from 5-Aminolevulinic Acid in Cancerous and Normal Cells (정상 및 암 세포주에서의 5-Aminolevulinic Acid에 의해 유도된 Protoporphyrin IX의 형광 검출을 위한 In Vitro 연구)

  • Kim, Myung-Hwa;Kim, Hyun-Jeong;Lee, In-Seon;Kim, Kyung-Chan;Lee, Chang-Seop
    • KSBB Journal
    • /
    • v.21 no.3
    • /
    • pp.171-174
    • /
    • 2006
  • To clarify the usefulness of fluorescent diagnosis for cancer, We investigated the optimal method of administrating 5-aminolevulinic acid(5-ALA) by analyzing fluorescence signal of Protoporphyrin IX(PpIX) in the cultured normal and cancer cells. 5-ALA was injected as a photosensitizer to the cervico-uterine cancer cell line(HeLa) and in normal liver cells(Chang). Chang and HeLa cells were incubated with various concentrations of 5-ALA($0-800{\mu}g/ml$). The accumulation of PpIX induced by 5-ALA was in HeLa and Chang cells. The cell viability was measured by MTT assay. The optimal concentration of ALA that induced maximum levels of PpIX was $50{\mu}g/ml$ in HeLa cell cultured for 24 hours after 5-ALA injection. Fluorescence of PpIX in HeLa cell was excited at a wavelength(${\lambda}$=410 nm) and showed an emission spectrum at 602.3 nm, 659.9 nm which could be related to the PpIX generation induced by the applied 5-ALA. The experimental results showed that fluorescence signal of PpIX was proportional to the concentration of 5-ALA in cancer cells, but measured with low concentration in normal cells.

A Study on Tuning Effects of Intake Manifold, Intake Pipe and Air Filter upon Performance and Exhaust Emissions of Driving Car (운행자동차 성능 및 배기 배출물에 미치는 흡기 다기관, 흡기 파이프 및 공기필터의 튜닝효과에 관한 연구)

  • Bae, Myung-whan;Ku, Young Jin;Park, Hui-seong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.538-548
    • /
    • 2016
  • The purpose of this study is to identify the possibility of effective tuning works, understand the characteristics of tuning engine, and analyse the basic data of engine tuning inspection corresponding to the safe operation and environment of a driving gasoline car. The effects of tuning on the characteristics of performance and exhaust emissions under a wide range of engine speeds are experimentally investigated by the actual driving car with a four-cycle, four-cylinder DOHC, turbo-intercooler, water-cooled gasoline engine operating at four types of non-tuning, tuning 1, 2 and 3. The tuning parts in the gasoline engine are the intake manifold, intake pipe and air filter. In the experiment, the output, torque and air-fuel ratio of the five-speed automatic transmission vehicles were measured at the chassis dynamometer(Dynojet 224xLC) with one person on board. The exhaust emissions of $NO_X$, THC, CO, $O_2$ and $CO_2$, and excess air ratio(${\lambda}$) at the other chassis dynamometer(DASAN-MD-ASM-97-KR-HD) were also measured by the idle/constant-speed mode(ASM2525 mode) test method. It is found that the actual air-fuel ratios of non-tuning and tuning engines were shown to be lower than the stoichiometric air-fuel ratio with increasing engine speed, and the actual air-fuel ratio of non-tuning engine was slightly higher than those of tuning engines when the engine speed is more than 4000 rpm. The output was significantly increased by the tuning whereby the maximum output of tuning engine was more increased to approximately 117.64% than that of non-tuning engine. In addition, CO, THC and $NO_X$ emissions of non-tuning and tuning engines measured by the constant-speed test mode were all satisfied with the inspection standards. CO emission was increased, while THC and $NO_X$ emissions were reduced by tuning.

Fiber Bragg Grating Temperature Sensor by the Wavelength Tuning Using the Temperature Dependence of VCSEL (빅셀(VCSEL)의 온도 의존성을 이용한 파장 가변 형 광섬유 격자 온도센서)

  • Lee, Chung-Ki;Kim, Sung-Moon
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.6
    • /
    • pp.241-246
    • /
    • 2018
  • In this paper, a low-cost optical temperature sensor is implemented, using a fiber Bragg grating (FBG) as the temperature probe and a low-cost VCSEL with temperature-dependent output wavelength as the light source. To analyze the wavelength of the reflected light from the FBG, an interrogation was applied using a method of referring to the internal temperature according to the output wavelength of the VCSEL. When the temperature of the VCSEL was adjusted from 14 to $52.2^{\circ}C$, the output wavelength varied from 1519.90 to 1524.25 nm. The degree of wavelength tuning according to temperature was $0.114nm/^{\circ}C$. The variable wavelength repeatability error according to temperature was ${\pm}0.003nm$, and the temperature measurement error was ${\pm}0.18^{\circ}C$. As a result of measuring the temperatures from 22.3 to $194.2^{\circ}C$, the value of the internal temperature change of the light source according to the applied temperature ${\Delta}T$ was $0.146^{\circ}C/{\Delta}T$, the change in reflected wavelength of the temperature probe according to applied temperature ${\Delta}T$ was measured at $16.64pm/^{\circ}C$. and the temperature measurement error of the sensor was ${\pm}1^{\circ}C$.

Specific Absorption Coefficients for the Chlorophyll and Suspended Sediment in the Yellow and Mediterranean Sea (황해와 지중해에서의 클로로필 및 부유입자의 비흡광계수 연구)

  • 안유환;문정언
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.4
    • /
    • pp.353-365
    • /
    • 1998
  • Light absorption coefficient per unit mass of particles, i.e., specific absorption coefficient, is important as one of the main parameters in developing algorithms for ocean color remote sensing. Specific absorption coefficient of chlorophyll ($a^*_{ph}$) and suspended sediment ($a^*_{ss}$) were analyzed with a spectrophotometer using the "wet filter technique" and "Kishino method" for the seawater collected in the Yellow and Mediterranean Sea. An improved data-recovery method for the filter technique was also developed using spectrum slopes. This method recovered the baselines of spectrum that were often altered in the original methods. High $a^*_{ph}({lambda})$ values in the oligotrophic Mediterranean Sea and low values in the Yellow Sea were observed, ranging 0.01 to 0.12 $m^2$/mg at the chlorophyll maximum absorption wavelength of 440 nm. The empirical relationship between $a^*_{ph}$(440nm) and chlorophyll concentrations () was found to fit a power function ($a^*_{ph}$=0.039 $^{-0.369}$), which was similar to Bricaud et al. (1995). Absorption specific coefficients for suspended sediment ($a^*_{ss}$) did not show any relationship with concentrations of suspended sediment. However, an average value of $a^*_{ss}$ ranging 0.005 - 0.08 $m^2$/g at 440nm, was comparable to the specific absorption coefficient of soil (loess) measured by Ahn (1990). The morepronounced variability of $a^*_{ss}$ than $a^*_{ph}$ was determined from the variable mixing ratio values between particulate organic matter and mineral. It can also be explained by a wide size-distribution range for SS which were determined by their specific gravity, bottom state, depth and agitation of water mass by wind in the sea surface.

Quantitative Elemental Analysis in Soils by using Laser Induced Breakdown Spectroscopy(LIBS) (레이저유도붕괴분광법을 활용한 토양의 정량분석)

  • Zhang, Yong-Seon;Lee, Gye-Jun;Lee, Jeong-Tae;Hwang, Seon-Woong;Jin, Yong-Ik;Park, Chan-Won;Moon, Yong-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.399-407
    • /
    • 2009
  • Laser induced breakdown spectroscopy(LIBS) is an simple analysis method for directly quantifying many kinds of soil micro-elements on site using a small size of laser without pre-treatment at any property of materials(solid, liquid and gas). The purpose of this study were to find an optimum condition of the LIBS measurement including wavelengths for quantifying soil elements, to relate spectral properties to the concentration of soil elements using LIBS as a simultaneous un-breakdown quantitative analysis technology, which can be applied for the safety assessment of agricultural products and precision agriculture, and to compare the results with a standardized chemical analysis method. Soil samples classified as fine-silty, mixed, thermic Typic Hapludalf(Memphis series) from grassland and uplands in Tennessee, USA were collected, crushed, and prepared for further analysis or LIBS measurement. The samples were measured using LIBS ranged from 200 to 600 nm(0.03 nm interval) with a Nd:YAG laser at 532 nm, with a beam energy of 25 mJ per pulse, a pulse width of 5 ns, and a repetition rate of 10 Hz. The optimum wavelength(${\lambda}nm$) of LIBS for estimating soil and plant elements were 308.2 nm for Al, 428.3 nm for Ca, 247.8 nm for T-C, 438.3 nm for Fe, 766.5 nm for K, 85.2 nm for Mg, 330.2 nm for Na, 213.6 nm for P, 180.7 nm for S, 288.2 nm for Si, and 351.9 nm for Ti, respectively. Coefficients of determination($r^2$) of calibration curve using standard reference soil samples for each element from LIBS measurement were ranged from 0.863 to 0.977. In comparison with ICP-AES(Inductively coupled plasma atomic emission spectroscopy) measurement, measurement error in terms of relative standard error were calculated. Silicon dioxide(SiO2) concentration estimated from two methods showed good agreement with -3.5% of relative standard error. The relative standard errors for the other elements were high. It implies that the prediction accuracy is low which might be caused by matrix effect such as particle size and constituent of soils. It is necessary to enhance the measurement and prediction accuracy of LIBS by improving pretreatment process, standard reference soil samples, and measurement method for a reliable quantification method.