• 제목/요약/키워드: L.plantarum

검색결과 575건 처리시간 0.034초

복합생균제가 육계의 생산성, 혈액생화학성분과 면역지표, 소화효소 활성도, 분중 미생물 및 유해가스 발생에 미치는 영향 (Effects of Probiotic Complex on Performance, Blood Biochemical and Immune Parameters, Digestive Enzyme Activity, Fecal Microbial Population and Noxious Gas Emission in Broiler Chicks)

  • 김민정;전동경;안호성;윤일규;문은서;이재현;임용;장인석
    • 한국가금학회지
    • /
    • 제47권3호
    • /
    • pp.169-180
    • /
    • 2020
  • 본 연구는 복합생균제(L. plantarum, B. subtilis, Saccharomyces cerevisiae)를 0%(CON, 대조군), 0.25%(PC1) 및 0.5%(PC2) 수준으로 급여하여 육계의 생산성, 장기 무게, 혈액 생화학적 성상 및 면역지표, 소화효소 활성도, 분의 미생물 군락 및 유해가스 발생에 미치는 영향을 조사하기 위해 실시되었다. 복합생균제 급여는 체중 등과 같은 생산성에는 유의적 영향을 미치지 않았다. 간과 흉선 무게는 복합생균제 급여에 따른 영향이 없었으나, 소장 점막세포 무게는 PC1군에서 유의하게(P<0.05) 증가하였다. Glucose, cholesterol, AST, ALT 등과 같은 혈액 생화학성분은 복합생균제 급여에 따른 변화가 없었다. 분비형 면역글로불린 A(sIgA) 수준은 PC2군에서 대조군과 비교해 소장 점막세포에서 유의하게(P<0.05) 증가하였으며, 혈액에서도 PC2군에서 대조군보다 약 20% 증가하는 경향을 보였다. 혈액과 소장 점막세포의 IL-1β 수준은 복합생균제 급여에 따른 차이가 없었다. 또한, 복합생균제 급여가 소장 점막세포의 maltase, sucrase 및 leucine aminopeptidase 활성도에는 영향을 미치지 않았다. 한편 Lactobacillus 및 Saccharomyces cerevisiae cfu 수준은 복합생균제 0.5% 급여군에서 대조군보다 유의하게(P<0.05) 증가하였고, E. coli cfu 값은 감소하였다(P<0.05). 복합생균제 0.5% 급여 시 분에서 황화수소(H2S) 발생량은 유의하게(P<0.05) 감소하였으며, 메틸메르캅탄(CH3SH) 발생량 역시 50% 수준으로 낮았다. 결론적으로 복합생균제 급여(0.25% 및 0.5%)는 육계의 생산성에는 영향을 미치지 않았지만 0.5% 수준으로 급여할 경우 소장 점막세포의 sIgA 증가와 유익 미생물 균총의 증식을 유도하여 분의 유해가스 발생을 감소시키는 것으로 나타났다.

4종의 발효균주가 당귀의 nodakenin과 decursin의 함량에 미치는 변화 (Nodakenin and Decursin Contents of Fermented Angelicae Gigantis Radix by 4 Species Strain)

  • 박진한;정지욱;권기태;서민준;서은경;박용기;이제현
    • 대한본초학회지
    • /
    • 제25권4호
    • /
    • pp.7-10
    • /
    • 2010
  • Objectives : The purpose of this study was to investigate the nodakenin and decursin contents in each fermented Angelicae gigantis Radix by 4 species of ferment strains. Methods : The strains of fermented Angelicae gigantis Radix were Lactobacillus plantarum(SE1), L. acidophilus(AC), Bacillus subtilis(B2) and B. licheniformis(BL2). The fermentative changes of nodakenin and decursin were analyzed using HPLC. Results : All of 4 species strains reduced nodakenin and decursin concentration in Angelicae gigantis Radix by fermentation. But fermentability were difference between strains. The nodakenin concentration of AC was lower than B2. The decursin concentrations of SE1 and AC were lower than B2 and BL2. Conclusions : 4 species of fermental strain were difference decomposable rate with nodakenin and decursin in fermented Angelicae gigantis Radix.

Optimization of Carbon Sources to Improve Antioxidant Activity in Solid State Fermentation of Persimmon peel Using Lactic Acid Bacteria

  • Hwang, Joo Hwan;Kim, Eun Joong;Lee, Sang Moo
    • 한국초지조사료학회지
    • /
    • 제32권4호
    • /
    • pp.361-368
    • /
    • 2012
  • The present study was conducted to develop persimmon peel, a by-product of dried persimmon manufacturing, as a feed additive via lactic acid bacteria fermentation. Pediococcus pentosaceus, Lactobacillus plantarum, and three strains of Leuconostoc mesenteroides were used as a starter culture in the solid state fermentation of persimmon peel, and antioxidant activity and total polyphenol content were assessed. Leuconostoc mesenteroides KCTC 3100 showed high antioxidant activity (p<0.05), whereas Pediococcus pentosaceus showed high total polyphenol content (p<0.05). These two strains were thus selected as starter culture strains. Glucose, sucrose and molasses were used as variables for optimization and a total 15 experimental runs were produced according to Box-Behnken design. Regarding significant effects of variables, molasses showed linear and square effects on antioxidant activity of persimmon peel fermentation (p<0.05). In conclusion, optimum concentrations of glucose, sucrose, and molasses were determined to be 4.2, 3.9 and 5.3 g/L, respectively, using a response surface model. Antioxidant activity was also improved 2.5 fold after optimization.

Improvement of Orchardgrass (Dactylis glomerata L.) Silage Quality by Lactic Acid Bacteria

  • Ilavenil, Soundharrajan;Muthusamy, Karnan;Jung, Jeong Sung;Lee, Bae Hun;Park, Hyung Soo;Choi, Ki Choon
    • 한국초지조사료학회지
    • /
    • 제41권4호
    • /
    • pp.302-307
    • /
    • 2021
  • In the current study, lactic lactic acid bacteria (LAB) Lactobacillus plantarum and Pediococcus pentosaceus were used as a mixed additive for the production of Orchardgrass silage by ensiled method and nutritional change fermentation ability and microbial content of experimental silages. The addition of LAB to Orchardgrass during ensiling process rapidly reduced the pH of the silages than the non-inoculated silages. In addition, the lactic and acetic acid content of silage was increased by LAB strains than the non-inoculated silages whereas butyric acid content was reduced in silage treated with LAB. A microbiological study revealed that higher LAB but lower yeast counts were observed in inoculated silages compared to non-inoculated silage. Overall data suggested that the addition of LAB stains could have ability to induce the fermentation process and improve the silage quality via increasing lactic acid and decreasing undesirable microbes.

프로바이오틱스에 의한 레자주린의 화학적 변화와 생균수 및 환원활성 측정에의 적용 (Chemical changes in resazurin by probiotics and its application for evaluating living bacterial cell counts and their reduction potentials)

  • 이효원;오영지;홍정일
    • 한국식품과학회지
    • /
    • 제53권2호
    • /
    • pp.204-212
    • /
    • 2021
  • 본 연구에서는 살아있는 프로바이오틱스 균주에 의한 레자주린의 흡광 및 형광특성의 변화와 레소루핀과의 반응성을 분석하고, 균주별 레자주린에 대한 환원능을 비교하였다. LGG에 의해 레자주린은 흡광과 형광의 변화를 수반하며 레소루핀으로 환원되고 반응시간과 생균수의 증가에 따라 환원정도가 증가하였으며, 형광의 변화에서 더 정확하고 민감한 반응성을 보였다. 한편 LGG에 의한 레소루핀으로부터 다이하이드로레소루핀으로의 환원반응은 거의 유발되지 않았다. 프로바이오틱스 6개 균주 중 L. kimchicus의 생균에 의한 레자주린 환원력이 월등하게 높은 반면, 균체 파쇄 후의 ABTS 및 DPPH 라디칼 소거능은 다른 양상을 보이며 L. plantarum과 L. casei가 높은 활성을 나타냈다. 한편 생균의 MTT 환원능은 L. kimchicus가 LGG에 비해 현저히 높아 레자주린 환원능과 유사한 양상을 보였다. 본 연구결과는 레자주린이 단일 균주 프로바이오틱스의 생균수 측정에 유용하며, 프로바이오틱스의 선별 및 환원활성 측정에 활용될 수 있음을 시사한다.

Effects of Microbial Additives on Chemical Composition and Fermentation Characteristics of Barley Silage

  • Amanullah, S.M.;Kim, D.H.;Lee, H.J.;Joo, Y.H.;Kim, S.B.;Kim, S.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권4호
    • /
    • pp.511-517
    • /
    • 2014
  • This study examined the effects of bacterial inoculants on chemical composition and fermentation indices of barley silage. Barley forage (Youngyang) was harvested at 24% dry matter (DM) and wilted to 47.9% DM. The wilted barley forage was chopped to 3-5 cm length and applied with no inoculant (CON), L. plantarum ($1{\times}10^{10}cfu/g$, LP) or Effective Microorganisms ($0.5{\times}10^9cfu/g$, EM). Then the forages were ensiled in four replications for each treatment in 20 L mini silos and stored for 100 days. The contents of crude protein and ether extract were higher in CON silage ensiled for 100-d, while the contents of DM and crude ash were higher in EM silage (p<0.05). The contents of ADF, NDF and hemicellulose as well as the in vitro DM digestibility were not affected by microbial inoculation (p>0.05). The pH, ammonia-N concentration and lactate to acetate ratio were higher (p<0.05) in CON silage, while lactate concentrations were higher (p<0.05) in CON and LP silage. Acetate concentration and lactic acid bacteria was increased (p<0.05) by both inoculants (LP and EM), but propionate concentration and yeast was increased (p<0.05) by EM and LP, respectively. These results indicated that the fermentation quality of barley silage was improved by the application of bacterial inoculants.

Effects of Maturity Stages on the Nutritive Composition and Silage Quality of Whole Crop Wheat

  • Xie, Z.L.;Zhang, T.F.;Chen, X.Z.;Li, G.D.;Zhang, J.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권10호
    • /
    • pp.1374-1380
    • /
    • 2012
  • The changes in yields and nutritive composition of whole crop wheat (Triticum aestivum L.) during maturation and effects of maturity stage and lactic acid bacteria (LAB) inoculants on the fermentation quality and aerobic stability were investigated under laboratory conditions. Whole crop wheat harvested at three maturation stages: flowering stage, milk stage and dough stage. Two strains of LAB (Lactobacillus plantarum: LAB1, Lactobacillus parafarraqinis: LAB2) were inoculated for wheat ensiling at $1.0{\times}10^5$ colony forming units per gram of fresh forage. The results indicated that wheat had higher dry matter yields at the milk and dough stages. The highest water-soluble carbohydrates content, crude protein yields and relative feed value of wheat were obtained at the milk stage, while contents of crude fiber, neutral detergent fiber and acid detergent fiber were the lowest, compared to the flowering and dough stages. Lactic acid contents of wheat silage significantly decreased with maturity. Inoculating homofermentative LAB1 markedly reduced pH values and ammonia-nitrogen ($NH_3$-N) content (p<0.05) of silages at three maturity stages compared with their corresponding controls. Inoculating heterofermentative LAB2 did not significantly influence pH values, whereas it notably lowered lactic acid and $NH_3$-N content (p<0.05) and effectively improved the aerobic stability of silages. In conclusion, considering both yields and nutritive value, whole crop wheat as forage should be harvested at the milk stage. Inoculating LAB1 improved the fermentation quality, while inoculating LAB2 enhanced the aerobic stability of wheat silages at different maturity stages.

Development of a Food-Grade Integration Vector for Heterologous Gene Expression and Protein Secretion in Lactococcus lactis

  • Jeong, Do-Won;Lee, Jong-Hoon;Kim, Kyoung-Heon;Lee, Hyong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권11호
    • /
    • pp.1799-1808
    • /
    • 2006
  • A food-grade integration vector based on site-specific recombination was constructed. The 5.7-kb vector, pIMA20, contained an integrase gene and a phage attachment site originating from bacteriophage A2, with the ${\alpha}$-galactosidase gene from Lactobacillus plantarum KCTC 3104 as a selection marker. pIMA20 was also equipped with a controllable promoter of nisA ($P_{nisA}$) and a signal peptide-encoding sequence of usp45 ($SP_{usp45}$) for the production and secretion of foreign proteins. pIMA20 and its derivatives mediated site-specific integration into the attB-like site on the Lactococcus lactis NZ9800 chromosome. The vector-integrated recombinant lactococci were easily detected by the appearance of blue colonies on a medium containing $X-{\alpha}-gal$ and also by their ability to grow on a medium containing melibiose as the sole carbon source. Recombinant lactococci maintained these traits in the absence of selection pressure during 100 generations. The ${\alpha}-amylase$ gene from Bacillus licheniformis, lacking a signal peptide-encoding. sequence, was inserted downstream of $P_{nisA}\;and\;SP_{usp45}$ in pIMA20, and the plasmid was integrated into the L. lactis chromosome. ${\alpha}-Amylase$ was successfully produced and secreted by the recombinant L. lactis, controlled by the addition and concentration of nisin.

Isolation of Antifungal Lactic Acid Bacteria (LAB) from "Kunu" against Toxigenic Aspergillus flavus

  • Olonisakin, Oluwafunmilayo Oluwakemi;Jeff-Agboola, Yemisi Adefunke;Ogidi, Clement Olusola;Akinyele, Bamidele Juliet
    • Preventive Nutrition and Food Science
    • /
    • 제22권2호
    • /
    • pp.138-143
    • /
    • 2017
  • The antifungal activity of isolated lactic acid bacteria (LAB) from a locally fermented cereal, "Kunu", was tested against toxigenic Aspergillus flavus. The liquid refreshment, "Kunu", was prepared under hygienic condition using millet, sorghum, and the combination of the two grains. The antifungal potential of isolated LAB against toxigenic A. flavus was carried out using both in vitro and in vivo antifungal assays. The LAB count from prepared "Kunu" ranged from $2.80{\times}10^4CFU/mL$ to $4.10{\times}10^4CFU/mL$ and Lactobacillus plantarum, Lactobacillus delbrueckii, Lactobacillus fermentum, Pediococcus acidilactici, and Leuconostoc mesenteroides were the isolated bacteria. Inhibitory zones exhibited by LAB against toxigenic A. flavus ranged from 5.0 mm to 20.0 mm. The albino mice infected with toxigenic A. flavus showed sluggishness, decrease in body weight, distortion of hair, and presence of blood in their stool, while those treated with LAB after infection were recovered and active like those in control groups. Except for the white blood cell that was increased in the infected mice as $6.73mm^3$, the packed cell volume, hemoglobin, and red blood cell in infected animals were significantly reduced (P<0.05) to 29.28%, 10.06%, and 4.28%, respectively, when compared to the treated mice with LAB and control groups. The antifungal activity of LAB against toxigenic A. flavus can be attributed to the antimicrobial metabolites. These metabolites can be extracted and used as biopreservatives in food products to substitute the use of chemical preservatives that is not appealing to consumers due to several side effects.

Fermentation quality and in vitro methane production of sorghum silage prepared with cellulase and lactic acid bacteria

  • Khota, Waroon;Pholsen, Suradej;Higgs, David;Cai, Yimin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권11호
    • /
    • pp.1568-1574
    • /
    • 2017
  • Objective: The effects of lactic acid bacteria (LAB) and cellulase enzyme on fermentation quality, microorganism population, chemical composition and in vitro gas production of sorghum silages were studied. Methods: Commercial inoculant Lactobacillus plantarum Chikuso 1 (CH), local selected strain Lactobacillus casei (L. casei) TH 14 and Acremonium cellulase (AC) were used as additives in sorghum silage preparation. Results: Prior to ensiling Sorghum contained $10^4LAB$ and $10^6cfu/g$ fresh matter coliform bacteria. The chemical compositions of sorghum was 26.6% dry matter (DM), 5.2% crude protein (CP), and 69.7% DM for neutral detergent fiber. At 30 days of fermentation after ensiling, the LAB counts increased to a dominant population; the coliform bacteria and molds decreased to below detectable level. All sorghum silages were good quality with a low pH (<3.5) and high lactic acid content (>66.9 g/kg DM). When silage was inoculated with TH14, the pH value was significantly (p<0.05) lower and the CP content significantly (p<0.05) higher compared to control, CH and AC-treatments. The ratio of in vitro methane production to total gas production and DM in TH 14 and TH 14+AC treatments were significantly (p<0.05) reduced compared with other treatments while in vitro dry matter digestibility and gas production did not differ among treatments. Conclusion: The results confirmed that L. casei TH14 could improve sorghum silage fermentation, inhibit protein degradation and decrease methane production.