• Title/Summary/Keyword: L. acidophilus

Search Result 347, Processing Time 0.026 seconds

Volatile Aroma Compounds of Fermented Milk Prepared from Milk and Fruit Juices (우유와 과즙으로 만든 발효유의 휘발성 향기 성분)

  • Ko, Young-Tae;Kang, Jung-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.184-191
    • /
    • 1998
  • Gel-type fermented milk was prepared from mixture of milk and apple juice or grape juice by fermentation with Lactobacillus acidophilus (KCTC 2182). Changes in volatile aroma compounds during 21 hr-lactic fermentation were studied. Diacetyl and acetoin, that were produced by L. acidophilus, were detected at 6 hr or 12 hr and showed peak values at 12 hr. Acetone and butanol, that were present originally in sample, decreased gradually during fermentation. Ethanol, that was either present originally in sample or produced by L. acidophilus, showed peak value at 18 hr in case of mixture of apple juice and milk. The concentration of ethanol was substantially high during whole period of fermentation in case of mixture of grape juice and milk though it showed peak value at 18 hr. Because the concentrations of ethanol in apple juice and ethanol and acetone in grape juice were relatively high, it might affect the results.

  • PDF

Comparative assessment of antibacterial activity of different glass ionomer cements on cariogenic bacteria

  • Naik, Rahul Gaybarao;Dodamani, Arun Suresh;Khairnar, Mahesh Ravindra;Jadhav, Harish Chaitram;Deshmukh, Manjiri Abhay
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.4
    • /
    • pp.278-282
    • /
    • 2016
  • Objectives: Glass ionomer cements (GICs), which are biocompatible and adhesive to the tooth surface, are widely used nowadays for tooth restoration. They inhibit the demineralization and promote the remineralization of the tooth structure adjacent to the restoration, as well as interfere with bacterial growth. Hence, the present study was conducted to assess and compare the antimicrobial activity of three commercially available GICs against two cariogenic bacteria. Materials and Methods: An agar plate diffusion test was used for evaluating the antimicrobial effect of three different GICs (Fuji IX, Ketac Molar, and d-tech) on Streptococcus mutans (S. mutans) and Lactobacillus acidophilus (L. acidophilus). Thirty plates were prepared and divided into two groups. The first group was inoculated with S. mutans, and the second group was inoculated with L. acidophilus. These plates were then incubated at $37^{\circ}C$ for 24 hours. Zones of bacterial growth inhibition that formed around each well were recorded in millimeters (mm). Results: The zones of inhibition for Fuji IX, Ketac Molar, and d-tech on S. mutans were found to be $10.84{\pm}0.22mm$, $10.23{\pm}0.15mm$, and $15.65{\pm}0.31mm$, respectively, whereas those for L. acidophilus were found to be $10.43{\pm}0.12mm$, $10.16{\pm}0.11mm$, and $15.57{\pm}0.13mm$, respectively. Conclusions: D-tech cement performed better in terms of the zone of bacterial inhibition against the two test bacteria, than the other two tested glass ionomers.

Inhibition of Escherichia coli O157:H7 Attachment by Interactions Between Lactic Acid Bacteria and Intestinal Epithelial Cells

  • Kim, Young-Hoon;Kim, Sae-Hun;Whang, Kwang-Youn;Kim, Young-Jun;Oh, Se-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.7
    • /
    • pp.1278-1285
    • /
    • 2008
  • The intestinal epithelial cell (IEC) layer of the intestinal tract makes direct contact with a number of microbiota communities, including bacteria known to have deleterious health effects. IECs possess innate protective strategies against pathogenic challenge, which primarily involve the formation of a physicochemical barrier. Intestinal tract mucins are principal components of the mucus layer on epithelial surfaces, and perform a protective function against microbial damage. However, little is currently known regarding the interactions between probiotics/pathogens and epithelial cell mucins. The principal objective of this study was to determine the effects of Lactobacillus on the upregulation of MUC2 mucin and the subsequent inhibition of E. coli O157:H7 attachment to epithelial cells. In the current study, the attachment of E. coli O157:H7 to HT-29 intestinal epithelial cells was inhibited significantly by L. acidophilus A4 and its cell extracts. It is also important to note that the expression of MUC2 mucin was increased as the result of the addition of L. acidophilus A4 cell extracts (10.0 mg/ml), which also induced a significant reduction in the degree to which E. coli O157:H7 attached to epithelial cells. In addition, the mRNA levels of IL-8, IL-1$\beta$, and TNF-$\alpha$ in HT-29 cells were significantly induced by treatment with L. acidophilus A4 extracts. These results indicate that MUC2 mucin and cytokines are important regulatory factors in the immune systems of the gut, and that selected lactobacilli may be able to induce the upregulation of MUC2 mucin and specific cytokines, thereby inhibiting the attachment of E. coli O157:H7.

Changes in the Functional Components of Lactobacillus acidophilus-Fermented Red Ginseng Extract and Its Application to Fresh Cheese Production (Lactobacillus acidophilus로 발효한 홍삼 농축액의 기능성 성분 변화 및 이를 이용한 신선치즈 제조)

  • Park, Jong-Hyuk;Moon, Hye-Jung;Oh, Jeon-Hui;Lee, Joo-Hee;Jung, Hoo-Kil;Choi, Kyung-Min;Cha, Jeong-Dan;Lim, Ji-Ye;Han, Su-Beom;Lee, Tae-Bum;Lee, Min-Jung;Choi, Hye-Ran
    • Journal of Dairy Science and Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.47-53
    • /
    • 2014
  • In this study, our aim was to investigate the changes in ginsenosides and polyphenols in red ginseng extract fermented by Lactobacillus acidophilus and to manufacture fresh cheese using fermented red ginseng extract. Red ginseng extract (3%, w/v) was fermented by L. acidophilus for 24 h. On performing lactic acid bacteria counts, we determined that L. acidophilus reached its maximum growth phase after 16 h; this was followed by decrease in growth. During fermentation, the levels of ginsenosides Rg3 (20S) and Rg3 (20R) as well as protopanaxadiol (20R), F1, and compound K increased, while those of s Rb2, Rd, Rf, and Rg1 decreased. The pH, titratable acidity, and viable cell counts in fresh cheese prepared using fermented red ginseng extract were measured during the storage period. The pH decreased over time, while titratable acidity and viable cell counts increased with increase in the duration of the storage period. Sensory tests showed that the overall sensory properties of fresh cheese prepared using 1% fermented red ginseng extract were similar to those of the control groups. This result suggests that L. acidophilus-fermented red ginseng has potential for development as a new bioactive material.

  • PDF

Rheological Properties of Dough and Quality Characteristics of Bread Containing Whey Ferment Cultured by L. acidophilus KCCM 32820 and P. freudenreichii KCCM 31227 (L. acidophilus KCCM 32820과 P. freudenreichii KCCM 31227로 배양한 유청발효물을 첨가한 반죽 레올로지 및 식빵의 품질특성)

  • Lee, Jeong-Hoon;Choi, Mi-Jung;Chung, Koo-Chun;Lee, Si-Kyung
    • Food Science of Animal Resources
    • /
    • v.32 no.6
    • /
    • pp.803-809
    • /
    • 2012
  • This study was carried out to evaluate the effects of whey ferment containing L. acidophilus KCCM 32820 and P. freudenreichii KCCM 31227 on the quality characteristics of white pan bread. Instrumental analysis such as alveograph, gelatinization temperature, texture analysis, retrogradation rate was determined. In an alveograph test, $P_{max}$ value in the treatment was higher than that in the control, but extensibility of dough in the control showed to be higher than in the treatment, so test dough showed more strength than the control. In terms of DSC analysis for gelatinization, temperature there were no significant differences of $T_p$ and ${\Delta}H$ between the control and the treatment. In hardness analysis by rheometer, dough containing whey ferment revealed lower values than the control. From the analysis of the organic acid contents, propionic acid was not detected in the control, however 1.13 mg/g of propionic acid was detected in the treatment. In the retrogradation analysis by DSC, the test delayed slightly compared to the control.

Screening of Immune-Active Lactic Acid Bacteria

  • Hwang, E-Nam;Kang, Sang-Mo;Kim, Mi-Jung;Lee, Ju-Woon
    • Food Science of Animal Resources
    • /
    • v.35 no.4
    • /
    • pp.541-550
    • /
    • 2015
  • The purpose of this study was to investigate the effect of lactic acid bacteria (LAB) cell wall extract on the proliferation and cytokine production of immune cells to select suitable probiotics for space food. Ten strains of LAB (Lactobacillus bulgaricus, L. paracasei, L. casei, L. acidophilus, L. plantarum, L. delbruekii, Lactococcus lactis, Streptococcus thermophilus, Bifidobacterium breve, and Pedicoccus pentosaceus) were sub-cultured and further cultured for 3 d to reach 7-10 Log colony-forming units (CFU)/mL prior to cell wall extractions. All LAB cell wall extracts failed to inhibit the proliferation of BALB/c mouse splenocytes or mesenteric lymphocytes. Most LAB cell wall extracts except those of L. plantarum and L. delbrueckii induced the proliferation of both immune cells at tested concentrations. In addition, the production of TH1 cytokine (IFN-γ) rather than that of TH2 cytokine (IL-4) was enhanced by LAB cell wall extracts. Of ten LAB extracts, four (from L. acidophilus, L. bulgaricus, L. casei, and S. thermophiles) promoted both cell proliferating and TH1 cytokine production. These results suggested that these LAB could be used as probiotics to maintain immunity and homeostasis for astronauts in extreme space environment and for general people in normal life.

Characterization of Isolated Lactobacillus spp. And classification by RAPD-PCR Analysis

  • Kwon, Oh-Sik
    • Journal of Microbiology
    • /
    • v.38 no.3
    • /
    • pp.137-144
    • /
    • 2000
  • The genetic relationship of six Lactobacillus strains and five laboratory isolated form fermented milk were determined by a random amplified polymorphic DNA(RAPD)-Polymease chan reaction (PCR) method. With 42 random primers. the result were analyzed by using the NTSYS-PC software for phenetic analysis. it revealed that all tested bacteria were divided into three distinct clusters. The clusters implied three subgenuses existed for the genus Lactobacillus, which were previously proposed by Rogosa and Sharpe. From the results, it was also possible to determine that the isolated Lactobacillus strains from fermented milk were grouped into L. acidophilus or L. bulgaricus. Interestingly. the three tested L. casei strains were divided into different clusters implying different subgenuses, i.e., Thermobacterium (L. casei YIT 9018) and Streptobacterium(L. casei CHR. Hansen and L.casei ATCC 4646). According to the distance matrix generated by an UPGMA program, the isolated bacteria LT01 and LT02 were determined as a subspecies of L. bulgaricus. The HK01, HK02 and HK03 were very closely related to either L. acidophilus or L. case YIT 9018. Hence, RAPD-PCR appears to be a very practical method to determine the genetic relationships of the Lactobacillus species and to characterize the unknown Lactobacillus strains at the subspecies level.

  • PDF

Antagonistic Action of Lactobacilli Toward Pathogenic Bacteria in Associative Cultures (Lactobacillus spp.에 의한 병원성 세균의 생육저해)

  • 강국희;성문희
    • Journal of Food Hygiene and Safety
    • /
    • v.4 no.2
    • /
    • pp.155-163
    • /
    • 1989
  • Three species of lactobacilli (L. casei, L. acidophilus, L. bulgaricus) were tested for their antibacterial activity. They all were antagonistic to growth of enteropathogenic Escherichia coli and Salmonella enteritidis in associative cultures in YS-medium (0.1 % yeast extract + skimmilk). Sal. enteritidis was more sensitive to the inhibition than was E. coli. Control cultures of E. coli and Sal. enteritidis were pH 5.08 and 5.70 in 72 hrs of incubation and the associative cultures were pH 3.35-4.48. The increases in pH resulting from growth of the lactobacilli in the associative cultures appeared to be sufficient and mainly responsible for the antagonistic actions exerted on the pathogens.

  • PDF

Optimization of the Viability of Probiotics in a Fermented Milk Drink by the Response Surface Method

  • Chen, Ming-Ju;Chen, Kun-Nan;Lin, Chin-Wen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.5
    • /
    • pp.705-711
    • /
    • 2004
  • Growth promoters were added to skim milk to retain the viability of Lactobacillus acidophilus and Bifidobacterium longum to help the product meet the "therapeutic minimum" at the time of consumption. The experiments were divided into two parts. The first part of the study used chicory inulin, isomalto-oligosaccharides and sucrose to investigate the effects of sugars on the activity of L. acidophilus and B. longum. The results indicated that the addition of isomalto-oligosaccharides stimulated growth of L. acidophilus and B. longum, resulting in a higher level of the probiotics after one month storage and yielded better $\beta$-galactosidase activity during fermentation. The second part studied the effects of three growth promoters on the viability of the probiotic cultures and the response surface method was employed to find the optimal ratio for addition of the growth promoters. The optimal ratio for added calcium gluconate, sodium gluconate and N-acetylglucosamine in fermented milk drinks were established. The response surface method proved to be a very effective way of optimizing the activity of probiotic cultures when developing a new fermented milk drink.

Plasmid Profiling and Curing of Lactobacillus Strains Isolated from the Gastrointestinal Tract of Chicken

  • Chin Sieo Chin;Abdullah Norhani;Siang Tan Wen;Wan Ho Yin
    • Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.251-256
    • /
    • 2005
  • In this study, we assessed the susceptibility of 12 Lactobacillus strains, all of which had been isolated from the gastrointestinal tracts of chicken, to three antibiotics (chloramphenicol, erythromycin and tetracycline) used commonly as selective markers in transformation studies of lactic acid bacteria. Among these strains, $17\%,\;58\%,\;and\;25\%$ were found to exhibit a high degree of resistance to $200\;{\mu}g/ml$ of tetracycline, erythromycin, and chloramphenicol, respectively. Seven of the 12 Lactobacillus strains exhibiting resistance to at least $50\;{\mu}g/ml$ of chloramphenicol or erythromycin, and five strains exhibiting resistance to at least $50\;{\mu}g/ml$ of tetracycline, were subsequently subjected to plasmid curing with chemical curing agents, such as novobiocin, acriflavin, SDS, and ethidium bromide. In no cases did the antibiotic resistance of these strains prove to be curable, with the exception of the erythromycin resistance exhibited by five Lactobacillus strains (L. acidophilus I16 and I26, L. fermentum I24 and C17, and L. brevis C10). Analysis of the plasmid profiles of these five cured derivatives revealed that all of the derivatives, except for L. acidophilus I16, possessed profiles similar to those of wild-type strains. The curing of L. acidophilus I16 was accompanied by the loss of 4.4 kb, 6.1 kb, and 11.5 kb plasmids.