Browse > Article
http://dx.doi.org/10.5851/kosfa.2015.35.4.541

Screening of Immune-Active Lactic Acid Bacteria  

Hwang, E-Nam (Department of Microbial Engineering, Konkuk University)
Kang, Sang-Mo (Department of Microbial Engineering, Konkuk University)
Kim, Mi-Jung (Department of Food Science and Nutrition, Anyang University)
Lee, Ju-Woon (Central Institute, RION Co., Ltd.)
Publication Information
Food Science of Animal Resources / v.35, no.4, 2015 , pp. 541-550 More about this Journal
Abstract
The purpose of this study was to investigate the effect of lactic acid bacteria (LAB) cell wall extract on the proliferation and cytokine production of immune cells to select suitable probiotics for space food. Ten strains of LAB (Lactobacillus bulgaricus, L. paracasei, L. casei, L. acidophilus, L. plantarum, L. delbruekii, Lactococcus lactis, Streptococcus thermophilus, Bifidobacterium breve, and Pedicoccus pentosaceus) were sub-cultured and further cultured for 3 d to reach 7-10 Log colony-forming units (CFU)/mL prior to cell wall extractions. All LAB cell wall extracts failed to inhibit the proliferation of BALB/c mouse splenocytes or mesenteric lymphocytes. Most LAB cell wall extracts except those of L. plantarum and L. delbrueckii induced the proliferation of both immune cells at tested concentrations. In addition, the production of TH1 cytokine (IFN-γ) rather than that of TH2 cytokine (IL-4) was enhanced by LAB cell wall extracts. Of ten LAB extracts, four (from L. acidophilus, L. bulgaricus, L. casei, and S. thermophiles) promoted both cell proliferating and TH1 cytokine production. These results suggested that these LAB could be used as probiotics to maintain immunity and homeostasis for astronauts in extreme space environment and for general people in normal life.
Keywords
lactic acid bacteria; cell wall extracts; proliferation; TH1 cytokine IFN-γ ; TH2 cytokine IL-4;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Räsänen, L. and Arvilommi, H. (1981) Cell walls, peptidoglycans, and teichoic acids of gram positive bacteria as polyclonal inducers and immunomodulators of proliferative and lymphokine responses of human B and T lymphocytes. Infect. Immun. 34, 712-717.
2 Rautava, S., Ruuskanen, O., Ouwehand, A., Salminen, S., and Isolauri. E. (2004) The hygienic hypothesis of atopic disease - An extended version. J. Pediatr. Gastroenterol. Nutr. 38, 378-388.   DOI
3 Stingele, F., Corthesy, B., Kusy, N., Porcelli, S. A., Kasper, D. L., and Tzianabos, A. O. (2004) Zwitterionic polysaccharides stimulate T cells with no preferential V{beta} usage and promote anery, resulting in protection against experimental abscess formation. J. Immunol. 172, 1483-1490.   DOI
4 van der Velden, V. H., Laan, M. P., Baert, M. R., de Waal Malefyt, R., Neijen, H. J., and Savelkoul, H. F. (2001) Selective development of a strong Th2 cytokine profile in high-risk children who develop a strong atopy: Risk factors and regulatory role of IFN-, IL-4, IL-10. Clin. Exp. Allergy 31, 997-1006.   DOI
5 Klaus, D. M. and Howard, H. N. (2006) Antibiotic efficacy and microbial virulence during space flight. Trends Biotechnol. 24, 131-136.   DOI
6 Laman, J. D., Schonoveld, A. H., Moll, F. L. von Meurs, M., and Pasterkamp, G. (2002) Significance of peptidoglycan, a proinflammatory bacterial antigen in atherosclerotic arteriesand its association with vulnerable plaques. Am. J. Cardiol. 90, 119-132.   DOI
7 Li, Y., Wu, Q., Deng, Y., Lv, H., Qiu, J., Chi, G., and Feng, H. (2015) D( )-Salicin inhibits the LPS-induced inflammation in RAW264.7 cells and mouse models. Int. Immunopharmacol. 26, 286-294.   DOI
8 Logan, A. C., Rao, A. V., and Irani, D. (2003) Chronic fatigue syndrome: lactic acid bacteria may be of therapeutic value. Med. Hypotheses 60, 915-923.   DOI
9 Masood, M. I., Qadir, M. I., Shirazi, J. H., and Khan, I. U. (2011) Beneficial effects of lactic acid bacteria on human beings. Crit. Rev. Microbiol. 37, 91-98.   DOI
10 National Astronautics and Space Administration. Delivery of probiotics in the space food system (Probiotics_Food). Available from:http://Isda. Jsc.nasa.gov/scripts/experiment/exper.aspx?exp_index=11339. Accessed Aug. 27, 2014.
11 Iwabuchi, N., Takahashi, N., Xiao, J., Miyagi, K., and Iwatsuki, K. (2007) In vitro Th1 cytokine-independent Th2 supressive effects of bifidobacteria. Microbiol. Immunol. 51, 649-660.   DOI
12 Özdemir, Ö. (2010) Various effects of different probiotics strains in allergic disorders: an update from laboratory and clinical data. Clin. Exp. Immunol. 160, 295-304.   DOI
13 Palomares, O. (2013) The role of regulatory T cells in IgE-mediated food allergy. J. Investig. Allergol. Clin. Immunol. 23, 371-382.
14 Pochard, P., Gosset, P., Grangette, C., Andre, C., Tonnel, A, Pestel, J., and Mercenier, A. (2002) Lactic acid bacteria inhibit TH2 cytokine production by mononuclear cells from allergic patients. J. Allergy Clin. Immunol. 110, 617-623.   DOI
15 Kalka-Moll, W. M., Tzianabos, A. O., Bryant, P. W., Niemeyer, M., Ploegh, H. L., and Kasper, D. L. (2002) Zwitterionic polysaccharides stimulated T cells by MHC class II-dependent interactions. J. Immunol. 169, 6149-6153.   DOI
16 Kanmani, P., Satish, K. R., Yuvaraj, N., Paari, K. A., Pattukumar, V., and Arul, V. (2013) Probiotics and its functionally valuable products-A review. Crit. Rev. Food Sci. Nutr. 53, 641-658.   DOI
17 Kim, J. H., Sung, N. Y., Byun, E. H., Kwon, S. K., Song, B. S., Choi, J. I., Yoon, Y., Kim, J. K., Byun, M. W., and Lee, J. W. (2009) Effect of γ-irradiation on immunological activities of β-glucan. Food Sci. Biotechnol. 18, 1305-1309.
18 Khani, S., Hosseini, H. M., Taheri, M., Nourani, M. R., and Imani Fooladi, A. A. (2012) Probiotics as an alternative strategy for prevention and treatment of human diseases: A review. Inflamm. Allergy Drug Targets 11, 79-89.   DOI
19 Kidd, P. (2003) Th1/Th2 balance: the hypothesis, its limitation, and implication ofr health and disease. Altern. Med. Rev. 8, 223-246.
20 Fujiwara, D., Inoue, S., Wakabayashi, H., and Fujii, T. (2004) The anti-allergic effects of lactic acid bacteria are strain dependent and mediated by effects on both Th1/Hh2 cytokine expression and balance. Int. Arch. Allergy Immunol. 135, 205-215.   DOI
21 Kimoto, H., Mizumachi, K., Okamoto, T., and Kurisaki, J. (2004) New Lactococcus strain with immunomodulatory activity: enhancement of Th1-type immune response. Microbiol. Immunol. 48, 75-82.   DOI
22 Kitazawa, H., Harata, T., Uemura, J., Saito, T., Kaneko, T., and Itoh, T. (1998) Phosphate group requirement for mitogenic activation of lymphocytes by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii spp. bulgaricus. Int. J. Food Microbiol. 40, 169-175.   DOI
23 Garimella, R., Halye, J. L., Harrison, W., Klebba, P. E., and Rice C. V. (2009) Conformation of the phosphate D-alanine zwitterion in bacterial teichoic acid from nuclear magnetic resonance spectroscopy. Biochemistry 48, 9242-9249.   DOI
24 Holt, P. G., Sly, P. S., and Bjrkstn, B. (1997) Atopic versus infectious diseases in childhood: A question of balance? Pediatr. Allergy Immunol. 8, 53-58.   DOI
25 Ghadimi, D., de Vrese, M., Heller, K. J., and Schrezenmeir, J. (2010) Lactic acid bacteria enhance autophagic ability of mononuclear phagocytes by increasing Th1 autophagy-promoting cytokine (IFN-γ) and nitric oxide (NO) level and reducing Th2 autophagy-restraining cytokines (IL-4 and IL-13) in response to Mycobacterium tuberculosis antigen. Int. Immunopharmacol. 10, 694-706.   DOI
26 Ghadimi, D., Flster-Holst, R., de Vrese, M., Winkler, P., Heller, K. J., and Schrezenmeir, J. (2008) Effects of probiotic bacteria and their genomic DNA on TH1/TH2-cytokine production by peripheral blood mononuclear cells (PBMCs) of healthy and allergic subjects. Immunobiol. 213, 677-692.   DOI
27 Isolauri, E., Salminen, S., and Ouwehand, A. C. (2004) Probiotics. Best Prac. Res. Cl. Em. 18, 299-313.   DOI
28 Hwang, E. N., Kang, S. M., Kim, J. K., Lee, J. W., and Park, J. H. (2013) Screening of radio-resistant lactic acid bacteria. Korea J. Food Sci. An. 33, 335-340.   DOI
29 Ilyin, V. K. (2005) Microbiological status of cosmonautics during orbital spaceflight on Salyut and Mir orbital station. Acta Astronaut. 56, 839-850.   DOI
30 Amrouche, T., Boutin, Y., Prioult, G., and Fliss, I. (2006) Effects of bifidobacterial cytoplasm, cell wall and exopolysaccharide on mouse lymphocyte proliferation and cytokine production. Int. Dairy J. 16, 70-80.   DOI
31 Arendt, E. K., Moroni, A., and Zannini, E. (2011) Medical nutrition therapy: Use of sourdough lactic acid bacteria as cell factory for delivering functional biomolecules and food ingredients in gluten free bread. Microb. Cell Fact. 10, S15.   DOI
32 Bhattacharyya, B. K. (2009) Emergence of probiotics in therapeutic applications. Int. J. Pharm. Sci. Nanotechnol. 2, 383-389.
33 Ball, J. R. and Evans Jr., C. H. (2001) Safe passage: Astronaut care for exploration missions. In Committee on Creating a Visionfor Space Medicine During Travel Beyond Earth Orbit,Board on Health Sciences Policy, Washington, DC, USA, National Academy.
34 Behera, A. K., Kumar, M., Lockey, R. F., and Mohapatra, S. S. (2002) Adenovirus-mediated interferon gene therapy for allergic asthma: Involvement of interleukin 12 and STAT4 signaling. Hum. Gene Ther. 13, 1697-1709.   DOI
35 Delcour, J., Ferain, T., Deghorain, M., Palumbo, E., and Hols, P. (1999) The biosynthesis and functionality of the cell-wall of lactic acid bacteria. A. Van Leeuw. J. Microb 76, 159-184.   DOI
36 Brown, S., Santa Maria Jr. J. P., and Walker, S. (2013) Wall teichoic acids of gram-positive bacteria. Annu. Rev. Microbiol. 67, 1-28.   DOI
37 Crucian, B. and Sams, C. (2009) Immune system dysregulation during spaceflight: Clinical risk for exploration-class missions. J. Leukocyte Biol. 86, 1017-1018.   DOI