• Title/Summary/Keyword: L-tyrosine

Search Result 371, Processing Time 0.024 seconds

Substrate Construes the Copper and Nickel Ions Impacts on the Mushroom Tyrosinase Activities

  • Gheibi, N.;Saboury, A.A.;Haghbeen, K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.642-648
    • /
    • 2006
  • Mushroom tyrosinase (MT) structural changes in the presence of $Cu ^{2+}$ and $Ni ^{2+}$ were studied separately. Far-UV CD spectra of the incubated MT with the either of the metal ions indicated reduction of the well-ordered secondary structure of the enzyme. Increasing in the maximum fluorescence emission of anilinonaphthalene-8-sulfonic acid (ANS) was also revealing partial unfolding caused by the conformational changes in the tertiary structure of MT. Thermodynamic studies on the chemical denaturation of MT by dodecyl trimethylammonium bromide (DTAB) showed decrease in the stability of MT in the presence of $Cu ^{2+}$ or $Ni ^{2+}$ using their activation concentrations. Both activities of MT were also assessed in the presence of different concentrations of these ions, separately, with various monophenols and their corresponding diphenols. Kinetic studies revealed that cresolase activity on p-coumaric acid was boosted in the presence of either of the metal ions, but inhibited when phenol, L-tyrosine, or 4-[(4-methylphenyl)azo]-phenol was substrate. Similarly, catecholase activity on caffeic acid was enhanced in the presence of $Cu ^{2+}$ or $Ni ^{2+}$, but inhibited when catechol, L-DOPA, or 4-[(4-methylbenzo)azo]-1,2-benzenediol was substrate. Results of this study suggest that both cations make MT more fragile and less active. However, the effect of the substrate structure on the MT allosteric behavior can not be ignored.

Tyrosinase Inhibiting and DPPH Radical Scavenging Activities of Rosmarinic Acid and Its Methyl ester from Salvia miltiorrhiza

  • Kang, Hye-Sook;Kim, Hyeung-Rak;Chung, Hae-Young;Choi, Jae-Sue
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.383.3-384
    • /
    • 2002
  • Rosmarinic acid (1) and methyl rosmarinic acid (2), isolated from the ethyl acetate soluble fraction of the methanolic extract of Salvia miltiorrhiza Bunge (Lamiaceae) were found to be the tyrosinase inhibitors and scavengers of 1, 1-diphenyl-2-picrylhydrzyl (DPPH) radical. Compounds 1 and 2 inhibited the oxidation of L-tyrosine catalyzed by mushroom tyrosinase with $IC_{50}$/ of 16.8 $\mu\textrm{M}$ and 21.5 $\mu\textrm{M}$. respectively. It compared well with kojic acid. a well-known tyrosinase inhibitor. with an $IC_{50}$ of 22.4 $\mu\textrm{M}$. The inhibitory kinetics, analyzed by a Lineweaver-Burk plot, found rosmarinic acid and its methyl ester to be competitive inhibitors with $K_{i}$ of $2.35{\times}10^{-5}M$ and $1.52{\times}10^{-5}M$ respectively. In addition, compounds 1 and 2 showed the scavenging activities on DPPH radical, with $IC_{50}$ of 4.27 $\mu\textrm{M}$ and 3.05 $\mu\textrm{M}$. respectively. These scavenging effects were more potent than that of L-ascorbic acid ($IC_{50}$ = 11.75$\mu\textrm{M}$).

  • PDF

Absorption Mechanism of Cefixime through the Nasal Cavity and Jejunum in Rats (흰쥐의 비강과 공장에서의 세픽심의 흡수기전)

  • Park, Gee-Bae;Roh, Hyun-Goo;Lee, Kwang-Pyo
    • YAKHAK HOEJI
    • /
    • v.38 no.2
    • /
    • pp.114-122
    • /
    • 1994
  • A study on the absorption mechanism of cefixime(CF), an oral ${\alpha}-amino$ group deficient cephalosporin antibiotic, has been undertaken through the rat jejunum and nasal cavity using an in situ simultaneous perfusion technique developed in our laboratory. CF was well absorbed in the jejunum and nasal cavity of rats at pH 5.0, but not at pH 7.0. CF absorption was studied over four orders of magnitude in concentration to determine saturability. Disappearance of CF in the perfusate followed first-order kinetics at all tested concentrations. The apparent first-order absorption rate constant was found to be dependent on the concentration over the range of $0.1\;mM{\sim}3\;mM$ in the jejunum and nasal cavity of rats. Inhibitors were added to determine the competitive inhibition of CF absorption. The presence of L-tyrosine, L-phenylalanine, alanine-alanine, glycine-glycine and cefadroxil produced the significant inhibition of CF absorption in the nasal cavity and jejunum. However, there was no evidence of the inhibition in the presence of cefazolin. In addition, The CF absorption in the nasal cavity and jejunum was inhibited significantly by ouabain and 2,4-dinitrophenol(DNP). This study suggested that CF is absorbed across the rat nasal cavity and jejunum by carrier-mediated transport mechanism and energy consuming system.

  • PDF

Requirement of EGF Receptor Kinase for Signaling by Calcium-Induced ERK Activation and Neurite Outgrowth in PC12 Cells

  • Park, Jung-Gyu;Jo, Young-Ah;Kim, Yun-Taik;Yoo, Young-Sook
    • BMB Reports
    • /
    • v.31 no.5
    • /
    • pp.468-474
    • /
    • 1998
  • Membrane depolarization in PC12 cells induces calcium influx via an L-type voltage-sensitive calcium channel (L-VSCC) and increases intracellular free calcium, which leads to tyrosine phosphorylation of epidermal growth factor (EGF) receptor and the associated adaptor protein, She. This activated EGF receptor complex then can activate mitogen-activated protein (MAP) kinase, as in nerve growth factor (NGF) receptor activation. In the present study, we investigated the role of EGF receptor in the signaling pathway initiated by membrane depolarization of PC12 cells. Prolonged membrane depolarization induced phosphorylation of extracellular signal-regulated kinase (ERK) within 1 min in undifferentiated PC12 cells. Pretreatment of PC12 cells with the calcium chelator EGTA abolished depolarization-stimulated ERK phosphorylation, but NGF-induced phosphorylation of ERK was not affected. The chronic treatment of phorbol ester, which down-regulated the activity of protein kinase C (PKC), did not affect the phosphorylation of ERK upon depolarization. In the presence of an inhibitor of EGF receptor, neither depolarization nor calcium ionophore increased the level of ERK phosphorylation. These data imply that the EGF receptor is functionally necessary to activate ERK and neurite outgrowth in response to the prolonged depolarization in PC12 cells, and also that PKC is apparently not involved in this signaling pathway.

  • PDF

Skin Whitening Effects of Extracts from Angelicae Gigantis Radix and Lycii fructus Ethanol Extracts (당귀와 구기자 에탄올 추출물의 피부 미백작용)

  • Hwang, Sung Yeoun;Lee, Jeong Tak;Kim, Yeong Uk;Kim, Hong Jun
    • Herbal Formula Science
    • /
    • v.21 no.1
    • /
    • pp.91-98
    • /
    • 2013
  • Objective : The purpose of this study was to investigate the synergistic effect of Angelicae gigantis Radix (AG) and Lycii fructus (LF) ethanol extracts on skin-whitening effects. Method : LFAG extracts were prepared by extracting with 80% ethanol. The efficacy of LFAG was judged by measurement of cell viability, tyrosinase activity, melanin production, tyrosinase and microphthalmia-associated transcription factor (MITF) expression in B16F10 murine melanoma cells by lipopolysaccharides (LPS) treatment. Results : Each extract (LF or AG) inhibited the tyrosinase activity in a dose-dependent manner. The co-treatment of LFAG extracts ($25{\mu}g/mL$ LF plus $25{\mu}g/mL$ AG) markedly suppressed the LPS-induced cellular tyrosine activity, melanin production, tyrosinase and MMP-1 expression in B16F10 murine melanoma cells. These suppressive effects were synergistically increased by their combination. Conclusions : With these observations, we suggest that the extracts from Lycii fructus and Angelica gigantis Radix could be potent natural materials for whitening skin.

Ameliorative Effects of Ombuoside on Dopamine Biosynthesis in PC12 Cells

  • Davaasambuu, Uchralsaikhan;Park, Keun Hong;Park, Hyun Jin;Choi, Hyun Sook;Lee, Chong Kil;Hwang, Bang Yeon;Lee, Myung Koo
    • Natural Product Sciences
    • /
    • v.24 no.2
    • /
    • pp.99-102
    • /
    • 2018
  • This study investigated the effects of ombuoside, a flavonol glycoside, on dopamine biosynthesis in PC12 cells. Ombuoside at concentrations of 1, 5, and $10{\mu}M$ increased intracellular dopamine levels at 1 - 24 h. Ombuoside (1, 5, and $10{\mu}M$) also significantly increased the phosphorylation of tyrosine hydroxylase (TH) (Ser40) and cyclic AMP-response element binding protein (CREB) (Ser133) at 0.5 - 6 h. In addition, ombuoside (1, 5, and $10{\mu}M$) combined with L-DOPA (20, 100, and $200{\mu}M$) further increased intracellular dopamine levels for 24 h compared to L-DOPA alone. These results suggest that ombuoside regulates dopamine biosynthesis by modulating TH and CREB activation in PC12 cells.

The Content Analysis of Amino Acids Including GABA of Chlorella protothecoides under Mixtrophic Culture (혼합영양 배양에서 Chlorella protothecoides의 GABA를 포함한 아미노산 함량 분석)

  • Jeong, Yu Jeong;Kim, Seong Hak;Min, Hee Gyung;Kim, Sung Chun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.18-25
    • /
    • 2018
  • Chlorella is quantitatively and qualitatively high in protein with balanced essential amino acid profiles, vitamins and minerals. ${\gamma}-Aminobutyric$ acid (GABA) is broadly distributed in nature and fulfills multi-physiological functions including effect such as a health-promoting functional compound. To improve the GABA production, Chlorella protothecoides were grown through the modified mixtrophic culture medium containing 2L of sterilized bristol medium with 0.01% urea and 4.0% glucose in a 5L fermenter. The results showed that nineteen kinds of amino acid including GABA at C. protothecoides sample were analyzed using high performance liquid chromatography (HPLC). Glutamic acid in total concentration (%) of amino acid is the most abundant amino acid (33.10%), followed by alanine (20.48%) and GABA (17.48%). Three amino acids including GABA were responsible for more than 70% total concentration in C. protothecoides sample including eight essential and nine non-essential amino acids: aspartic acid, asparagine, serine, glutamine, histidine, glycine, threonine, arginine, tyrosine, valine, methionine, tryptophan, phenylalanine, isoleucine, leucine, lysine. As a result of this experiment, it is expected that Chlorella will be developed to a critical product having high value as, GABA, functional food materials.

Preparation of Radiopharmaceuticals through Arylthallium Ditrifluoroacetate Intermediate (Arylthallium ditrifluoroacetate를 중간체(中間體)로 하는 방사성의약품(放射性醫藥品)의 합성법(合成法))

  • Kim, You-Sun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.17 no.2
    • /
    • pp.71-77
    • /
    • 1983
  • Amino acids such as L-tyrosine, L-histidine, and tryptophan, which bear an aromatic ring in the molecule, could successfully be labelled by radioactive iodine through arylthallium ditrifluoroacetate intermediate. Generally, the labelling reaction could proceed in a short labelling time(ca, 20 minutes) and resulted in a high labelling yields and purity of the labelled product. This procedure has, therefore, been proved to be effective as the labelling method of short labelling time and high specific activity. Labelling proteins such as oval albumin and human albumin could also be achieved in $34\sim48%$ net labelling yield by thallating them at the low temperature $(0\sim10^{\circ}C)$, whereas the labelled products were mainly composed of various denatured products by thallating them at the high temperature$(35\sim40^{\circ}C)$, though the radioactivity was highly retained in the labelled products. Uracil and hippuric acid could also be labelled in a short labelling time though their thallation required a prolonged heating procedure. It was proved that this procedure may be effective to label these compounds by short lived radioisotopes. The labelling yields were, however, lower than 30%.

  • PDF

Comparative Biochemical Properties of Proteinases from the Hepatopancreas of Shrimp. -II. Purification of Trypsin from the Hepatopancreas of Penaeus orientalis-

  • Oh Eun-Sil;Kim Doo-Sang;Jung Kyoo-Jin;Pyeun Jae-Hyeung;Heu Min-Soo;Kim Hyeung-Rak
    • Fisheries and Aquatic Sciences
    • /
    • v.1 no.2
    • /
    • pp.209-215
    • /
    • 1998
  • Trypsin-like enzyme was purified from shrimp hepatopancreas through Q-Sepharose ionic exchange, benzamidine Sepharose-6B affinity, and Superdex 75 gel chromatography. Purity of trypsin-like enzyme was increased 69-fold with $44\%$ yield. The enzyme consisted of a single polypeptide chain with a molecular weight (M.W.) of 32 kDa judged by sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme was completely inactivated by serine enzyme inhibitors such as soybean trypsin inhibitor (SBTI), tosyl-L­lysine chloromethyl ketone (TLCK), and leupeptin. However, the enzyme was not affected by tosyl-L-phenylalanine chloromethyl ketone (TPCK) which is a chymotrypsin specific inhibitor. The enzyme had no activity against benzoyl-tyrosine ethyl ester (BTEE) which is a chymotrypsin specific substrate. The enzyme showed high activity on the carboxyl terminal of Phe, Tyr. Glu, Arg, and Asp. However. no activity was detected against the carboxyl terminal of Pro, Trp, Cys, Gly, Val, and Ala.

  • PDF

Metabolite Profiling during Fermentation of Makgeolli by the Wild Yeast Strain Saccharomyces cerevisiae Y98-5

  • Kim, Hye Ryun;Kim, Jae-Ho;Ahn, Byung Hak;Bai, Dong-Hoon
    • Mycobiology
    • /
    • v.42 no.4
    • /
    • pp.353-360
    • /
    • 2014
  • Makgeolli is a traditional Korean alcoholic beverage. The flavor of makgeolli is primarily determined by metabolic products such as free sugars, amino acids, organic acids, and aromatic compounds, which are produced during the fermentation of raw materials by molds and yeasts present in nuruk, a Korean fermentation starter. In this study, makgeolli was brewed using the wild yeast strain Saccharomyces cerevisiae Y98-5, and temporal changes in the metabolites during fermentation were analyzed by ultra-high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. The resultant data were analyzed by partial least squares-discriminant analysis (PLS-DA). Various metabolites, including amino acids, organic acids, sugar alcohols, small peptides, and nucleosides, were obviously altered by increasing the fermentation period. Changes in these metabolites allowed us to distinguish among makgeolli samples with different fermentation periods (1, 2, 3, 6, 7, and 8 days) on a PLS-DA score plot. In the makgeolli brewed in this study, the amounts of tyrosine ($463.13{\mu}g/mL$) and leucine ($362.77{\mu}g/mL$) were high. Therefore, our results indicate that monitoring the changes in metabolites during makgeolli fermentation might be important for brewing makgeolli with good nutritional quality.