• 제목/요약/키워드: L-lactide

검색결과 187건 처리시간 0.032초

조직공학적 신경재생을 위한 NGF를 함유한 PLA 담체의 제조 및 방출 (Preparation and Release Profile of N8f-loaded Polylactide Scaffolds for Tissue Engineered Nerve Regeneration)

  • 전은경;황혜진;강길선;이일우;이종문
    • 폴리머
    • /
    • 제25권6호
    • /
    • pp.893-901
    • /
    • 2001
  • 조직공학적 신경재생 및 파킨슨씨병 등의 시경퇴행성 질환에서의 치료에 이용 목적으로 신경성장인자(nerve growth factor, NGF)를 생분해성 고분자 담체에 NGF를 서방화시키고자 PLA 담체에 함유시켜 유화동결건조법으로 제조하였다. 제조된 NGF의 방출량은 생체외 pH 7.4, 37$^{\circ}C$의 PBS 조건하에서 4주 동안 방출실험 하였으며, 함유된 NGF의 활성을 확인하기 위하여 PC-l2 세포에 직접 배양하여 확인하였다. 제조되어진 PLA 담체는 열린 셀 구조를 가졌으며, 초기 NGF의 함량이 많을수록 방출량도 증가를 보였으며, 제조과정에서의 NGF의 환성을 확인하기 위하여 PC-12 세포를 배양한 결과 신경돌기가 성장하였다. 본 연구는 생분해성 고분자 특정인 확산과 분해에 의해서 생물학적 활성물질인 NGF의 방출을 조절할 수 있으며, 조직공학적으로 서방화되어 3차원적인 신경재생을 가능케 할 것으로 기대된다.

  • PDF

Preparation and Evaluation of Chrysin Encapsulated in PLGA-PEG Nanoparticles in the T47-D Breast Cancer Cell Line

  • Mohammadinejad, Sina;Akbarzadeh, Abolfazl;Rahmati-Yamchi, Mohammad;Hatam, Saeid;Kachalaki, Saeed;Zohreh, Sanaat;Zarghami, Nosratollah
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권9호
    • /
    • pp.3753-3758
    • /
    • 2015
  • Background: Polymeric nanoparticles are attractive materials that have been widely used in medicine for drug delivery, with therapeutic applications. In our study, polymeric nanoparticles and the anticancer drug, chrysin, were encapsulated into poly (D, L-lactic-co-glycolic acid) poly (ethylene glycol) (PLGA-PEG) nanoparticles for local treatment. Materials and Methods: PLGA: PEG triblock copolymers were synthesized by ring-opening polymerization of D, L-lactide and glycolide as an initiator. The bulk properties of these copolymers were characterized using 1H nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy. In addition, the resulting particles were characterized by scanning electron microscopy. Results: The chrysin encapsulation efficiency achieved for polymeric nanoparticles was 70% control of release kinetics. The cytotoxicity of different concentration of pure chrysin and chrysin loaded in PLGA-PEG ($5-640{\mu}M$) on T47-D breast cancer cell line was analyzed by MTT-assay. Conclusions: There is potential for use of these nanoparticles for biomedical applications. Future work should include in vivo investigation of the targeting capability and effectiveness of these nanoparticles in the treatment of breast cancer.

선형 및 스타형 폴리락트산 입체블록 공중합체의 합성 및 물성 (Synthesis and Characterization of Linear and Star-shaped Poly(lactic acid) Stereo-block Copolymers)

  • 이선영;김지흥
    • 폴리머
    • /
    • 제24권5호
    • /
    • pp.638-645
    • /
    • 2000
  • 디올 또는 다가 알콜의 존재 하에서 DL-락트산 및 L-락티드를 연속 중합하여 선형 (ABA 형)과 스타형 ((AB)$_{n}$ 형)의 폴리락트산 입체블록 공중합체를 합성하고 분석하였다. 알콜의 함량에 따라 블록 공중합체의 분자량을 어느 정도 범위에서 조절할 수 있었으며, 합성된 중합체는 비교적 좁은 분자량 분포를 나타내었다. 폴리락트산 입체블록 공중합체의 유리전이온도는 5$0^{\circ}C$ 부근이었으며, 융점은 구조와 분자량에 따라 100~14$0^{\circ}C$ 범위에서 관찰되었다. 용융 엔탈피로부터 얻은 결정화도의 측정 결과로부터 블록구조를 갖는 공중합체는 D-입체이성질체 단량체의 높은 조성(~35%)에서도 결정화가 충분히 일어남을 확인하였는데 이는 유사한 조성의 랜덤 공중합체의 성질과 대비된다. 선형과 스타형 블록 공중합체의 경우 모두 열처리 온도와 시간에 따른 결정화도의 변화를 관찰하였다.다.

  • PDF

젖산이 결합된 히아루론산 막의 특성 (Characterization of Hyaluronic Acid Membrane Containing Lactic Acid)

  • 정성일;권지영
    • 멤브레인
    • /
    • 제15권1호
    • /
    • pp.8-14
    • /
    • 2005
  • 생체 적합성이 우수한 히아루론산과 생분해성이 우수한 폴리 락타이드의 모노머를 결합하여 인체내에서 분해속도를 조절할 수 있는 생체적합성이 우수한 생체 재료를 제조하고자 하였다. 냉동 건조법을 이용하여 히아루론산과 폴리락타이드의 모노머인 젖산 또는 이량체인 락타이드를 가교제 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide로 가교시켰다. 생성된 막을 적외선 흡수 분광법으로 분석한 결과 에스테르 결합이 생성됨을 확인하였고, 핵자기 공명 분광법으로 분석하여 이 에스테르 결합이 젖산의 반응 참여에 의한 것임을 확인하였다. 젖산과 히아루론산의 몰비를 1부터 10까지 증가시키면서 가교시킨 결과 젖산의 전화율(6∼32%)과 가교도(4∼l9%)는 증가하였으나, 반응에 참여한 젖산이 가교되는 선택도는 몰비에 관계없이 62% 정도로 일정하였다. 몰비가 커서 젖산이 많이 첨가되면 취성은 강해졌으나 생분해 속도는 빨라졌으며, 팽윤도는 500에서 2000% 범위의 값을 보였다.

흡수성 스크류를 이용한 하악과두 골절의 치료 (TREATMENT OF CONDYLE FRACTURE WITH RESORBABLE SCREW)

  • 여인범;민승기;오승환;권경환;최상문;박상규
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제28권6호
    • /
    • pp.559-564
    • /
    • 2006
  • According to the development of operation technique and biologic materials, oromaxillofacial surgery department have used many kinds of metal and biologic materials in ORIF and plastic surgery. In maxillofacial fracture, ORIF with metal plate and screw have short healing period and good prognosis. But ORIF with metal materials have many complications as maxillofacial abnormal growth, screw loosening, bone malunion. And metal materials have not used in infection site. The purpose of this study is to evaluate the clinical value of 10 condylar fracture patients operated with absorbable screw at Wonkwang university. Ten patients(8 males, 2 female, mean aged 28) who had mandibular condyle process fracture treated with PLLA implants(poly-l-lactide) was recalled for follow-up clinical and radiologic examination for 10 years. Mouth opening recorvered to more than 35mm and occlusion was stable in all patients. All fractured mandibular condyles showed anatomic good reduction and long-term stability with the use of resorbable miniplates and screw. Bone healing was satisfactory in all patients, and there was no evidence of abnormal resorption of condylar process.

Cervical Cancer Gene Therapy by Gene Loaded PEG-PLA Nanomedicine

  • Liu, Bo;Han, Shu-Mei;Tang, Xiao-Yong;Han, Li;Li, Chang-Zhong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권12호
    • /
    • pp.4915-4918
    • /
    • 2014
  • Background and Aims: Advances in the treatment of cervical cancer over the last decade have predominantly involved the development of genes directed at molecular targets. Gene therapy is recognized to be a novel method for the treatment of cervical cancer. Genes can be administered into target cells via nanocarriers. This study aimed to develop systemically administrable nano-vectors. Floate (Fa) containing gene loaded nanoparticles (NPs) could target HeLa human cervical cancer cells through combination with receptors on the cells to increase the nuclear uptake of genetic materials. Methods: Fa was linked onto Poly (ethylene glycol)-b-poly (D, L-lactide) (PEG-PLA) to form Fa-PEG-PLA, and the resulting material was used to load plasmids of enhanced green fluorescence protein (pEGFP) to obtain gene loaded nanoparticles (Fa-NPs/DNA). Physical-chemical characteristics, in vitro release and cytotoxicity of Fa-NPs/DNA were evaluated. The in vitro transfection efficiency of Fa-NPs/DNA was evaluated in HeLa cells and human umbilical vein endothelial cells (HUVEC). PEG-PLA without Fa was used to load pEGFP from NPs/DNA as a control. Results: Fa-NPs/DNA has a particle size of 183 nm and a gene loading quantity of 92%. After 72h of transfection, Fa-NPs/DNA displayed over 20% higher transfection efficiency than NPs/DNA and 40% higher than naked DNA in HeLa cells. However, in HUVECs, no significant difference appeared between Fa-NPs/DNA and NPs/DNA. Conclusions: Fa-PEG-PLA NPs could function as excellent materials for gene loading. This nano-approach could be used as tumor cell targeted medicine for the treatment of cervical cancer.

PLGA 나노파티클로부터 수용성 블루 덱스트란의 서방성 방출 (Sustained Release of Water-Soluble Blue Dextran from PLGA Nanoparticles)

  • 류상화;황성주;박정숙
    • Journal of Pharmaceutical Investigation
    • /
    • 제36권2호
    • /
    • pp.109-114
    • /
    • 2006
  • Biodegradable poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles were developed for sustained delivery of water-soluble macromolecules. PLGA nanoparticles were fabricated by spontaneous emulsification solvent diffusion method generating negatively charged particles and heterogeneous size distribution. As a model drug, blue dextran was encapsulated in PLGA nanoparticles. In addition, nanoparticles were also prepared with varying ratio of poloxamer 188 (P188) and poloxamer 407 (P407), and coating with poly(vinyl alcohol) (PVA). Then, the particle size, zeta potential and encapsulation efficiency of nanoparticles containing blue dextran were studied. In vitro release of blue dextran from nanoparticles was also investigated. The surface and morphology of nanoparticles were characterized by scanning electron microscopy (SEM). In case of nanoparticles prepared with PLGA, P407, and different organic solvents, particle size was in the range of $230{\sim}320\;nm$ and zeta potentials of nanoparticles were negative. The SEM images showed that ethyl acetate is suitable for the formulation of PLGA nanoparticles with good appearance. Moreover, ethyl acetate showed higher encapsulation efficiency than other solvents. The addition of P188 to formulation did not affect the particle size of PLGA nanoparticles but altered the release patterns of blue dextran from nanoparticles. However, PVA, as a coating material, altered the particle size with increasing the PVA concentration. The nanoparticles were physically stable in the change of particle size during long-term storage. From the results, the PLGA nanoparticles prepared with various contents of poloxamers and PVA, could modulate the particles size of nanoparticles, in vitro release pattern, and encapsulation of water-soluble macromolecules.

Latent Transforming Growth Factor-beta1 Functionalised Electrospun Scaffolds Promote Human Cartilage Differentiation: Towards an Engineered Cartilage Construct

  • Lim, Erh-Hsuin;Sardinha, Jose Paulo;Myers, Simon;Stevens, Molly
    • Archives of Plastic Surgery
    • /
    • 제40권6호
    • /
    • pp.676-686
    • /
    • 2013
  • Background To overcome the potential drawbacks of a short half-life and dose-related adverse effects of using active transforming growth factor-beta 1 for cartilage engineering, a cell-mediated latent growth factor activation strategy was developed incorporating latent transforming growth factor-${\beta}$1 (LTGF) into an electrospun poly(L-lactide) scaffold. Methods The electrospun scaffold was surface modified with NH3 plasma and biofunctionalised with LTGF to produce both random and orientated biofunctionalised electrospun scaffolds. Scaffold surface chemical analysis and growth factor bioavailability assays were performed. In vitro biocompatibility and human nasal chondrocyte gene expression with these biofunctionalised electrospun scaffold templates were assessed. In vivo chondrogenic activity and chondrocyte gene expression were evaluated in athymic rats. Results Chemical analysis demonstrated that LTGF anchored to the scaffolds was available for enzymatic, chemical and cell activation. The biofunctionalised scaffolds were non-toxic. Gene expression suggested chondrocyte re-differentiation after 14 days in culture. By 6 weeks, the implanted biofunctionalised scaffolds had induced highly passaged chondrocytes to re-express Col2A1 and produce type II collagen. Conclusions We have demonstrated a proof of concept for cell-mediated activation of anchored growth factors using a novel biofunctionalised scaffold in cartilage engineering. This presents a platform for development of protein delivery systems and for tissue engineering.

생분해성 고분자(PLGA)로 캡슐화한 Magnetite 나노입자의 제조 (Preparation of Magnetite Nanoparticles Encapsulated with Biodegradable Polymer (PLGA))

  • 이호석;정일엽;송기창;안양규;최은정
    • 한국자기학회지
    • /
    • 제16권1호
    • /
    • pp.107-110
    • /
    • 2006
  • Emulsification-diffusion법에 의해 magnetite를 생분해성 고분자인 PLCA로 캡슐화 시켜 magnetite/PLGA 복합분말을 제조하였다. 이때 유기용매의 종류 변화가 얻어진 복합분말의 크기에 미치는 영향을 살펴보기 위해 다양한 종류의 유기용매[ethyl acetate(EA), propylene carbonate(PC), acetone (ACE)]가 사용되었으며, 분말의 입도분포는 동적 광산란법에 의해 측정되었다. 물에 부분적으로 용해되는 용매인 EA나 PC가 사용되었을 경우에는 80nm이하의 작은 크기의 복합분말이 얻어진 반면, 물에 잘 용해되는 용매인 ACE가 사용되었을 경우에는 330nm 이상의 큰 복합분말이 얻어졌다.

Preparation of Cyclosporin A-loaded Nanoparticles Containing Ethyl Myristate or Chitosan and Pharmacokinetics in Rats

  • Nam, Dae-Sik;;Lee, Woo-Kyoung
    • Journal of Pharmaceutical Investigation
    • /
    • 제37권1호
    • /
    • pp.15-22
    • /
    • 2007
  • An oil-in-water solvent evaporation method was used to prepare the cyclosporin A (CyA)-loaded nanoparticles varying in poly (D,L-lactide-co-glycolide) (PLGA) polymer (RG 502H, RG 503H) and the amount of additive ethyl myristate (EM) or chitosan (CS). The particles were characterized for drug loading and entrapment efficiency by HPLC, surface morphology by scanning electron microscopy, particle size by dynamic light scattering and surface charge by Zetapotential. The results showed drug loadings ranging from 10.9% to 15.8% with high encapsulation efficiency (82.0-97.8%). SEM and DLS studies showed discrete and spherical particles with smooth surfaces and mean size ranging 257.6-721.7 nm. The additive EM or CS did not change the mean sizes of the nanoparticles, whereas by the coating effect of CS, the Zetapotential values of the CS-added nanoparticles were moved to the more positive direction as the amount of CS was increased. From the pharmacokinetic analysis, the nanoparticles formulations showed the higher bioavailability and MRT than $Neoral^{\circledR}$ While little adding effect of EM or CS was detected in pharmacokinetic profile when RG 503H was used as polymer carrier, more noticeable different pharmacokinetic behaviors could be observed in case of RC 502H. EM incorporation was found to elevate the $K_{el}$, whereas CS coating resulted in the decrease of F and $K_{el}$, which seems to be due to the function of CS as a barrier and a mucoadhesive coating.