• Title/Summary/Keyword: L-glutamate dehydrogenase

Search Result 27, Processing Time 0.024 seconds

Why do Chickpea (Cicer arietinum L. cv. Tyson) Bacteroids Contain Little Poly-β-Hydroxybutyrate?

  • Lee, Hoi-Seon
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.1
    • /
    • pp.1-6
    • /
    • 1999
  • Poly-${\beta}$-hydroxybutyrate (PHB) and enzymes related PHB metabolism have been measured in nitrogen-fixing symbiosis of chickpea and cowpea plants. Bacteroids from chickpea and cowpea contained PHB to 0.8% and 43% of their dry weight, respectively, whereas the free-living cells CC 1192 and I 16 produced $285{\pm}55mg$ and $157{\pm}18mg$ of PHB g (dry weight)$^{-1}$. To further understand why chickpea bacteroids contained little PHB, the enzyme activities of PHB metabolism (3-ketothiolase, acetoacetyl-CoA reductase, PHB depolymerase, and 3-hydroxybutyrate dehydrogenase), the TCA cycle (malate dehydrogenase, citrate synthase, and isocitrate dehydrogenase), and related reactions (malic enzyme, pyruvate dehydrogenase, and glutamate:2-oxoglutarate transaminase) were compared in extracts from chickpea and cowpea bacteroids and the respective free-living bacteria. Significant differences were observed between chickpea and cowpea bacteroids and between the bacteroid and free-living forms of CC 1192, with respect to the capacity for some of these reactions. It is indicated that a greater potential for oxidizing malate to oxaloacetate in chickpea bacteroids could be a factor that favors the utilization of acetyl-CoA in TCA cycle rather than for PHB synthesis.

  • PDF

Occurrence of Microcystin-Containing Toxic Water Blooms in Central India

  • Agrawal Manish K.;Ghosh Shubhro K.;Bagchi Divya;Weckesser Juergen;Erhard Marcel;Bagchi Suvendra N.
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.212-218
    • /
    • 2006
  • Three out of fourteen Microcystis-dominant cyanobacterial blooms in Central India were found to be toxic to mice ($LD_{50}$ ranging from 35-450 mg bloom dry mass/kg body weight). The liver architecture of the treated mice showed characteristic symptoms of hepatotoxicity relative to the untreated controls, with increased enzyme activities of serum lactate dehydrogenase (LDH), serum glutamate oxaloacetate transaminase (SGOT), alkaline phosphatase (ALP), and serum glutamate pyruvate transaminase (SGPT). RP-HPLC revealed the presence of microcystin-LR, microcystin-RR, and desmethyl microcystin-RR in the given region to maximum amounts of 390, 1,030, and $860{\mu}g/g$ bloom dry weight, respectively, corresponding to a maximum of 2.8 mg/l microcystin-LR in the lake water. Further confirmation of the microcystin variants was conducted using a MALDI-TOF MS analysis.

Amperometric Enzyme Electrode for the Determination of $NH_4^+$ ($NH_4^+$ 정량을 위한 Amperometric Enzyme Electrode)

  • Moo Lyong Seo;Jae Sang Kim;Shim Sung Lee;Zun Ung Bae;Heung Lark Lee;Tae Myung Park
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.11
    • /
    • pp.937-942
    • /
    • 1993
  • Enzyme electrodes for amperometric measurement of ammonia was prepared by immobilization of L-glutamate dehydrogenase on an Immobilon-AV Affinity membrane and attachment to a glassy carbon electrode. Reduced nicotinamide adenine dinucleotide (NADH) was used as the electroactive species. The electrochemical oxidation of NADH was monitored at +1.0 volt vs. Ag/AgCl. Response was linear from $4.0\;{\times}\;10^{-5}\;to\;4.0\;{\times}\;10^{-4}$ M. The detection limit was 2.0 ${\times}\;10^{-6}$ M. Response time, the optimum pH and life time of enzyme immobilized membrane were 2 min, pH 7.3∼7.6 (Dulbecco's buffer solution) and about 25 days respectively. When the enzyme electrode was applied to the $NH_4^+$ determination with amperometric method, other physiological materials had no interference.

  • PDF

Effects of Electroacupuncture on Activity of GOT, GPT, LDH and Functional Recovery in the Motor Injury Rats by the 6-hydroxydopamine (6-hydroxydopamine에 의한 운동손상 흰 쥐에서 전침이 GOT, GPT, LDH 활성도 및 기능회복에 미치는 영향)

  • Ha, Mi-Sook;Rho, Min-Hee
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.5 no.2
    • /
    • pp.265-272
    • /
    • 2010
  • Purpose : This study was investigated the effect of electroacupuncture stimulation on the change of blood biochemical components in the rat spinal cord injury(SCI) damaged by the 6-hydroxydopamine. Methods : SCI model rats were damaged in L1-L2 injected with 6-hydroxydopamine. The thirty Sprague-Dawley adult male rats were randomly divided into normal group, control group and electroacupuncture group. Experimental groups were applied as electroacupuncture(Es-160, ITO, Japan) for 15minutes during the low frequency(2 Hz) stimulation to zusanli. The enzyme concentration levels analysis of the hematological changes were measured of Glutamate Oxaloacetate Transaminase(GOT), Glutamate Pyruvate Transaminase(GPT), Lactate dehydrogenase(LDH) and motor function recovery change was evaluated by the rota-rod test. Results : This study were as follow : The concentration of GOT, LDH in experimental group was lower than control group(p<.05). The experimental group showed increase of motor function recovery more in compared to control group(p<.05). Conclusion : The results of this study showed that electroacupuncture to zusanli point have an effect on functional recovery after the 6-hydroxydopamine induced SCI in rats.

Effect of Medicinal Plant Extracts on Alcohol Metabolism in Rat Liver

  • Lee, Seung-Eun;Bang, Jin-Ki;An, Tae-Jin;Yu, Young-Ju;Chung, Hae-Gon;Kim, Geum-Suk;Seong, Nak-Sul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.2
    • /
    • pp.113-117
    • /
    • 2004
  • The experiment was conducted to evaluate the effects of medicinal plants on ethanol-metabolism. Sprague Dawley rats divided into 6 groups (n=8), fed with 10% ethanol and diets supplemented with each 1% of four plant extracts, ${\alpha}-tocopherol$ (as positive control) and fiber (as negative control) for 4 weeks. Group supplemented with plant extract of Ulmus davidiana showed the most high value (322 nM NADH/min/mg protein) in alcohol dehydrogenase (ADH) activity among the experimented groups $(144{\sim}312\;nM\;NADH/min/mg\;protein)$ at p<0.05. Groups fed with Lagerstroemia indica and Zelkova serrata extract-supplemented diets indicated high activity in aldehyde dehydrogenase (ALDH, 16.7 & 12.3 M NADH/min/mg protein), which were comparatively lower than 20.1 M NADH/min/mg protein of ${\alpha}-tocopherol$ fed group. All of the groups fed with plant extracts indicated very low GPT activities $(13.9{\sim}17.3\;IU/l)$ compared to those (146.1 & 128.6 IU/l) fed with ${\alpha}-tocopherol$ and fiber at p<0.05. From these results, it is suggested that Lagerstroemia indica have a potent ethanol-metabolizing activity.

5-(Hydroxymethyl)-2-furfuraldehyde, Anticonvulsant Furan from the Arils of Euphoria longana L.

  • Kim, Dong-Hyun;Kim, Dae-Won;Choi, Soo-Young;Park, Chang-Ho;Baek, Nam-In
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.32-34
    • /
    • 2005
  • Arils of Euporia longana L. was extracted with 80% aqueous MeOH and partitioned successively with EtOAc, n-BuOH and $H_2O$. From the n-BuOH fraction, furan compound was isolated through silica gel column chromatography. The results of physico-chemical data including NMR, MS and IR revealed the compound to be 5-(hydroxymethyl)-2-furfuraldehyde. This compound stimulated GDH I activity by $19.2{\pm}0.6$, $41.2{\pm}0.9$, $68.4{\pm}1.1$, $80.3{\pm}0.9$ and $85.9{\pm}1.6%$ at in vitro concentrations of 0.005, 0.008, 0.02 and 0.03 %, respectively.

Shifts in Protein Metabolism in Hemolymph and Fat Body of the Silkworm, Bombyx mori L. in Response to Fluoride Toxicity

  • Ramakrishna, S.;Jayaprakash, Jayaprakash
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.15 no.1
    • /
    • pp.59-68
    • /
    • 2007
  • Changes in protein metabolism were studied in hemolymph and fat body on days 1, 3, 5 and 7 of the fifth-instar silkworm, Bombyx mori, exposed to lethal, sublethal doses and prevailing levels of fluoride in groundwater in Karnataka and Andhra Pradesh States of India. The total protein content indicated a depletion followed by a concomitant increase in accumulation of free amino acids. Concurrently, the activity of protease in both of the tissues was also increased. A steady enhancement in the activities of alanine aminotransferase and aspartate aminotransferase paralleled the elevation of glutamate dehydrogenase activity in the tissues studied. It is presumed, on the basis of these results, that the fluoride toxicity causes major changes in protein metabolism of the silkworms.

Amperometric Biosensor for Urea

  • 하광수;서무룡
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.11
    • /
    • pp.1149-1152
    • /
    • 1997
  • An enzyme electrode for the amperometric measurement of urea was prepared by co-immobilizing L-glutamate dehydrogenase and urease onto an Immobilon-AV affinity membrane attached to a glassy carbon electrode. The reduced nicotinamide adenine dinucleotide(NADH) was used as the electroactive species. The electrochemical oxidation of NADH was monitored at +1.0 volt vs. Ag/AgCl. The enzyme-immobilized electrode was linear over the range of 2.0 × 10-5 to 2 × 10-4 M. The response time of the electrode was approximately 3 min. and the optimum pH of the enzyme immobilized membrane was pH 7.4-7.6 (Dulbcco's buffer solution). It was stable for at least two weeks or 50 assays. There was no interference from other physiological species, except from high levels of ascorbic acid.

Amperometric Determination of Urea Using Enzyme-Modified Carbon Paste Electrode

  • Yang, Jae-Kyeong;Ha, Kwang-Soo;Baek, Hyun-Sook;Lee, Shim-Sung;Seo, Moo-Lyong
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.10
    • /
    • pp.1499-1502
    • /
    • 2004
  • An amperometric biosensor based on carbon paste electrodes (CPEs) for the determination of urea was constructed by enzyme (urease/GL-DH)-modified method. Urea was hydrolyzed to ${NH_4}^+$ by catalyzing urease onto the enzyme-modified electrode surface in sample solution. In the presence of ${\alpha}$-ketoglutarate and reduced nicotinamide adenine dinucleotide(NADH), a liberated ${NH_4}^+$ produce to L-glutamate and $NAD^+$ by Lglutamate dehydrogenase (GL-DH). After the chemical reaction was proceeded, the electrochemical reaction was occurred that an excess of the NADH was oxidized to $NAD^+$. The oxidation current of NADH was monitored at +1.10 volt vs. Ag/AgCl. An optimum conditions of biosensor were investigated: The optimum pH range for catalyzed hydrolysis reaction of urea was pH 7.0-7.4. The linear response range and detection limit were $2.0\;{\times}\;10^{-5}{\sim}2.0\;{\times}\;10^{-4}M\;and\;5.0\;{\times}\;10^{-6}M$, respectively. Another physiological species did not interfere, except L-ascorbic acid.

The Role of Glutamic Acid-producing Microorganisms in Rumen Microbial Ecosystems (반추위 미생물생태계에서의 글루탐산을 생성하는 미생물의 역할)

  • Mamuad, Lovelia L.;Lee, Sang-Suk
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.520-526
    • /
    • 2021
  • Microbial protein is one of the sources of protein in the rumen and can also be the source of glutamate production. Glutamic acid is used as fuel in the metabolic reaction in the body and the synthesis of all proteins for muscle and other cell components, and it is essential for proper immune function. Moreover, it is used as a surfactant, buffer, chelating agent, flavor enhancer, and culture medium, as well as in agriculture for such things as growth supplements. Glutamic acid is a substrate in the bioproduction of gamma-aminobutyric acid (GABA). This review provides insights into the role of glutamic acid and glutamic acid-producing microorganisms that contain the glutamate decarboxylase gene. These glutamic acid-producing microorganisms could be used in producing GABA, which has been known to regulate body temperature, increase DM intake and milk production, and improve milk composition. Most of these glutamic acid and GABA-producing microorganisms are lactic acid-producing bacteria (LAB), such as the Lactococcus, Lactobacillus, Enterococcus, and Streptococcus species. Through GABA synthesis, succinate can be produced. With the help of succinate dehydrogenase, propionate, and other metabolites can be produced from succinate. Furthermore, clostridia, such as Clostridium tetanomorphum and anaerobic micrococci, ferment glutamate and form acetate and butyrate during fermentation. Propionate and other metabolites can provide energy through conversion to blood glucose in the liver that is needed for the mammary system to produce lactose and live weight gain. Hence, health status and growth rates in ruminants can be improved through the use of these glutamic acid and/or GABA-producing microorganisms.