• Title/Summary/Keyword: L-arabinose

Search Result 162, Processing Time 0.025 seconds

Optimization of Dilute Acid Pretreatment of Rapeseed straw for the Bioethanol Production (바이오에탄올 생산을 위한 농산부산물(유채짚)의 묽은 산 전처리 공정 최적화)

  • Jeong, Tae-Su;Won, Kyung-Yoen;Oh, Kyeong-Keun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.67-70
    • /
    • 2008
  • Biological conversion of biomass into fuels and chemicals requires hydrolysis of the polysaccharide fraction into monomeric sugars. Hydrolysis can be performed enzymatically, and with dilute or concentrate mineral acids. In this study, dilute sulfuric acid used as a catalyst for the hydrolysis of rapeseed straw. The purpose of this study is to optimize the hydrolysis process in a 15ml bomb tube reactor and investigate the effects of the acid concentration, temperature and reaction time on the hemicellulose removal and consequently on the production of sugars (xylose, glucose and arabinose) as well as on the formation of by-products (furfural, 5-hydroxymethylfurfural and acetic acid). Statistical analysis was based on a model composition corresponding to a $3^3$ orthogonal factorial design and employed the response surface methodology (RSM) to optimize the hydrolysis conditions, aiming to attain maximum xylose extraction from hemicellulose of rapeseed straw. The obtained optimum conditions were: acid concentration of 0.77%, temperature of $164^{\circ}C$ with a reaction time of 18min. Under these conditions, 75.94% of the total xylose was removed and the hydrolysate contained 0.65g $L^{-1}$ Glucose, 0.36g $L^{-1}$ Arabinose, 3.59g $L^{-1}$ Xylose, 0.51g $L^{-1}$ Furfural, 1.36g $L^{-1}$ Acetic acid, and 0.08g $L^{-1}$ 5-hydroxymethylfurfural.

  • PDF

Studies on the Saponins in the Shoot of Aralia Elata (II) -Identification of the Saponins- (두릅나무 순의 Saponin에 관한 연구 (II) - Saponin 의 동정 -)

  • Kim, Young-Hee;Lee, Mee-Kyoung;Lee, Mahn-Jung
    • Journal of the Korean Society of Food Culture
    • /
    • v.5 no.2
    • /
    • pp.243-251
    • /
    • 1990
  • We determined the structure of main saponin which extracted from the shoot of Aralia Elata. The results were as follows. 1. The main aglycons and suger of the total saponins of Nr2 sample were identified as oleanolic acid and hederagenin, and glucose, arabinose and rhamnose. A probable new aglycon was isolated and inferred as 1, 3-methylenedioxy-3-dehydroxyoleanolic acid. 2. One compound of Fh saponin (named as Elatoside $Fh_2$) which was obtained first in this species was elucidated as 3-O-$({\alpha}-L-arabinopyranosyl(1{\rightarrow}2)-{\beta}-D-gluco-pyranosyl)$-28-O-${\beta}-D-glucophyranosyl$ oleanolic acid on the basis of chemical and spectral evidence of IR, $^1H$, $^{13}C-NMR$ and MS.

  • PDF

Enhanced Enzyme Activities of Inclusion Bodies of Recombinant ${\beta}$-Galactosidase via the Addition of Inducer Analog after L-Arabinose Induction in the araBAD Promoter System of Escherichia coli

  • Jung, Kyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.434-442
    • /
    • 2008
  • We observed that an inclusion body (IB) of recombinant ${\beta}$-galactosidase that was produced by the araBAD promoter system in Escherichia coli (E. coil) showed enzyme activity. In order to improve its activity, the lowering of the transcription rate of the ${\beta}$-galactosidase structural gene was attempted through competition between an inducer (L-arabinose) and an inducer analog (D-fucose). In the deep-well microtiter plate culture and lab-scale fermentor culture, it was demonstrated that the addition of D-fucose caused an improvement in specific ${\beta}$-galactosidase production, although ${\beta}$-galactosidase was produced as an IB. In particular, the addition of D-fucose after induction led to an increase in the specific activity of ${\beta}$-galactosidase IB. Finally, we confirmed that the addition of D-fucose after induction caused changes in the structure of ${\beta}$-galactosidase IB, with higher enzyme activity. Based on these results, we expect that an improved enzyme IB will be used as a biocatalyst of the enzyme bioprocess, because an enzyme IB can be purified easily and has physical durability.

Purification and Characterization of the D-xylulokinase from Candida sp. L-16 (Candida sp. L-16이 생산하는 D-Xylulokinase의 정제 및 특성)

  • 이종수;주길재
    • Food Science and Preservation
    • /
    • v.9 no.4
    • /
    • pp.429-433
    • /
    • 2002
  • The D-xylulokinase from Candida sp. L-16 was purified through a sequence of ammonium sulfate fractionation, DEAE-cellulose chromatography, Sephadex G-100 and Sephadex G-200 gel filtration. The specific activity of the purified Dxylulokinase was increased to 23.2 fold and the yield was 11.2%. The enzyme was showed to be a single protein band by SDS-PAGE. The molecular weight of the enzyme was 150,000 dalton, this enzyme was identified to be a dimer with two subunits. The optimum conditions of the enzyme were pH 8.0 and 40$\^{C}$, respectively. The enzyme was relatively stable between pH 7.0 to pH 9.0, but it was unstable over 30$\^{C}$. The enzyme showed substrate specificity on D-xylulose, D-arabinose and D-ribose, Km value and Vmax for D-xylulose were 0.042 mM and 117 units/ml, respectively. The activation energy of the enzyme was 4.75 Kcal/mol. The one was inhibited by metabolic intermediates such as 6-phosphogluconic acid, 2-keto-gluconic acid. The enzyme was activated by EDTA and thiol compounds such as cysteine-HCI, DTT and glutathione.

Characterization of the arfA Gene from Bacillus stearothermophilus No. 236 and Its Protein Product, $\alpha$-L-Arabinofuranosidase

  • Kim, Kyoung-Ju;Kim, Kyung-Nam;Choi, Yong-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.474-482
    • /
    • 2004
  • The $\alpha$-L-arabinofuranosidase (Arfase) gene of Bacillus stearothermophilus No. 236 was cloned and sequenced. The ORF of the gene, designated arfA, encoded a 507 -residue polypeptide with calculated molecular mass of 57 kDa. The Arfase produced by a recombinant Escherichia coli strain containing the arfA gene was purified to apparent homogeneity and characterized. The molecular mass of the Arfase determined by SDS-PAGE was 60 kDa. However, according to gel filtration, it was estimated to be approximately 190 kDa. These results indicated that the functional form of the Arfase is trimeric. The optimal pH and temperature for the enzyme activity were pH 6.5 and $55^{\circ}C$, respectively. The half-life of the enzyme at $60^{\circ}C$ was about 6 h. Kinetic experiments at $45^{\circ}C$ with pNPM (p-nitrophenyl $\alpha$-L-arabinofuranoside) as a substrate gave the $K_m and V_{max}$ values of 1.19 mM and 26.1 U/ mg, respectively. When the enzyme was combined with Bacillus stearothermophilus No. 236 endoxylanase and $\beta$-xylosidase, it hydrolyzed arabinoxylan into L-arabinose and xylose more efficiently than Arfase alone. This synergistic effect suggested that the complete hydrolysis of xylan with large amounts of arabinose side chains required Arfase as well as endoxylanase and $\beta$-xylosidase.

Production of a Platelet Aggregation Inhibitor, Salmosin, by High Cell Density Fermentation of Recombinant Escherichia coli

  • Seo, Myung-Ji;Choi, Hak-Jong;Chung, Kwang-Hoe;Pyun, Yu-Ryang
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.10
    • /
    • pp.1053-1056
    • /
    • 2011
  • Optimal conditions for a high cell density fermentation were investigated in a recombinant Escherichia coli producing salmosin, a platelet aggregation inhibitor. The optimized carbon and nitrogen sources were glycerol 10 g/l, yeast extract 30 g/l, and bacto-tryptone 10 g/l, yielding the dry cell weight (DCW) of 10.61 g/l in a 500 ml flask culture. The late-stage induction with 1% L-arabinose in a 5 l jar fermentor showed the highest DCW of 65.70 g/l after 27 h of the fed-batch fermentation. Around 2,200 mg/l of the protein was expressed as an inclusion body that was then refolded to obtain the active salmosin of 96 mg/l. We also confirmed the inhibitory activity against platelet aggregation of the active salmosin from the high cell density fermentation.

Adsorption of Heavy Metal onto the Extracellular Polysaccharide Produced by the Purple Nonsulfur Photosynthetic Bacteria Rhodopseudomonas sp. KH4 (홍색 비황 광합성 세균 Rhodopseudomonas sp. KH4의 Extracellular polysaccharide의 중금속 흡착)

  • Jeong, Jeong-Hwa;Seo, Pil-Soo;Kong, Sung-Ho;Lee, Jong-Yeol;Lee, Sang-Seob
    • Korean Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.326-331
    • /
    • 2006
  • In the present study, we examined biosorption characteristics of heavy metals onto the extracellular polysaccharide (EPS) produced by the purple nonsulfur photosynthetic bacteria Rhodopseudomonas sp. KH4, which was isolated from a stream in Anyang, Kyonggi-Do. When Cd (100 mg/L) and Cu (100 mg/L) were added to EPS (1.0 g/L) in the optimal condition (Cd; pH 8, Cu; pH 5, $40^{\circ}C$), 84.2 mg/L of Cd and 70.0 mg/L of Cu were adsorbed within 30 min and 10 min, respectively. When 100 mg/L of Cd and Cu were present as mixture, 16.8 mg/L of Cd and 48.7 mg/L of Cu were adsorbed at $25^{\circ}C$, pH 5. The maximum adsorption capacity determined by fitting Langmuir isotherms model was suitable for describing the biosorption of Cd (76.9 mg/g) and Cu (67.1 mg/g) by EPS. The neutral monosaccharide in the EPS determined by GC consisted of arabinose (2.4%), glucose (7.1%) and mannose (90.5%).

Escherichia coli Arabinose Isomerase and Staphylococcus aureus Tagatose-6-Phosphate Isomerase: Which is a Better Template for Directed Evolution of Non-Natural Substrate Isomerization?

  • Kim, Hye-Jung;Uhm, Tae-Guk;Kim, Seong-Bo;Kim, Pil
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.6
    • /
    • pp.1018-1021
    • /
    • 2010
  • Metallic and non-metallic isomerases can be used to produce commercially important monosaccharides. To determine which category of isomerase is more suitable as a template for directed evolution to improve enzymes for galactose isomerization, L-arabinose isomerase from Escherichia coli (ECAI; E.C. 5.3.1.4) and tagatose-6-phosphate isomerase from Staphylococcus aureus (SATI; E.C. 5.3.1.26) were chosen as models of a metallic and non-metallic isomerase, respectively. Random mutations were introduced into the genes encoding ECAI and SATI at the same rate, resulting in the generation of 515 mutants of each isomerase. The isomerization activity of each of the mutants toward a non-natural substrate (galactose) was then measured. With an average mutation rate of 0.2 mutations/kb, 47.5% of the mutated ECAIs showed an increase in activity compared with wild-type ECAI, and the remaining 52.5% showed a decrease in activity. Among the mutated SATIs, 58.6% showed an increase in activity, whereas 41.4% showed a decrease in activity. Mutant clones showing a significant change in relative activity were sequenced and specific increases in activity were measured. The maximum increase in activity achieved by mutation of ECAI was 130%, and that for SATI was 190%. Based on these results, the characteristics of the different isomerases are discussed in terms of their usefulness for directed evolution of non-natural substrate isomerization.

Effect of Aminoethoxyvinylglycine Dipping Treatment on Ethylene Production and Cell Wall Composition of 'Tsugaru' Apple Fruits during Cold Storage (Aminoethoxyvinylglycine 침지처리가 '쓰가루' 사과의 저온저장중 에틸렌발생과 세포벽성분들의 변화에 미치는 영향)

  • Kang In-Kyu;Choi Cheol;Choi Dong-Geun
    • Journal of Bio-Environment Control
    • /
    • v.15 no.1
    • /
    • pp.91-99
    • /
    • 2006
  • This study was conducted to determine the influence of postharvest dipping treatment with aminoethoxyvinylglycine (AVG) on ethylene production and composition of non-cellulosic neutral sugars in cell walls of 'Tsugaru' apple fruits during storage. Fruits were harvested on August 20, soaked in AVG 50 and 75 $mg L^{-1}$ solution for 5 minutes, and stored in cold storage chamber at $0{\pm}1^{\circ}C$ for 60 days. Fruit quality factor, ethylene productions, and cell wall component changes were investigated at 20 days interval. As a result, the fruit firmness and acid content were much higher in AVG treated fruits than those of untreated one during 60 days of cold storage. Ethylene production of AVG treated fruits was reduced to the level of 1/10 compared with untreated one. As to the change of non-cellulosic neutral sugars in the cell walls of 'Tsu- garu' fruits, the major sugar was arabinose and galactose in water, CDTA and $Na_2CO_3$ soluble fractions. The content of arabinose and galactose in untreated fruits increased as the softening of fruits was in progress, but the fruits treated with AVG showed a little change during storage, so it is predicted that these two cell wall compositional sugars were not solubilized by the treatment of AVG. Accordingly, the marketability of 'Tsu- garu' fruits could remarkably increase when soaking the fruits in AVG solution after harvest.