• Title/Summary/Keyword: L-Shaped Feed

Search Result 21, Processing Time 0.02 seconds

A Study on Bandwidth Broadening of U-slot Microstrip Patch Antenna Design with L-Shaped Inset-Feed Structure (L자형 Inset 급전구조를 갖는 U슬롯 마이크로스트립 패치 안테나의 광대역화에 관한 연구)

  • Kim, Jae-Yeon;Chang, Tae-Soon;Hur, Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.33-39
    • /
    • 2021
  • In this study, we tried to find the correlation of the parameters and dual resonance of U-slot microstrip patch antenna with L-shaped Inset-feed structure and design broadband antenna using them. In the first step, we classified cases where dual resonance occurs through changes in antenna parameters that affect antenna performance. In the second step, we correlated each antenna parameter to the location and intensity of the resonance point, and 3 dB bandwidth. Next, antenna simulation confirmed the process of designing to have wide bandwidth using the correlation in the second step previously presented in the U-slot antenna case with narrow bandwidth. Finally, we fabricated a designed antenna and demonstrated the validity of antenna bandwidth broadening through the correlation analysis.

Design of L-shaped Dual Inset Feeding Microstrip Stacked Patch Antenna for 2.5GHz Band (이중 L형 인셋 급전된 2.5GHz용 적층 마이크로 스트립 안테나의 설계)

  • Kim, Gun-Kyun;Kim, On;Rhee, Seung-Yeop
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.461-466
    • /
    • 2019
  • In this paper, we have studied the improvement of gain and bandwidth characteristics by using double feeding and L-shaped inset feed line matching circuit in microstrip stacked patch antenna which is widely used to broaden the gain of general microstrip antenna. The proposed structure is composed of two feeding edges of the main patch antenna, each of them are connected to a feeding line having an L shaped inset feeder. And the parasitic patch is placed at a proper distance above the main patch. The size of the main patch is designed so that the resonance frequency is close to the center frequency of the target frequency band. The experimental results show that the bandwidth was increased more than 180MHz in the 2.3-2.7 GHz band, which is more interesting than the single feed, and the gain improvement of 2.5dBi was obtained at 2.7GHz.

Design and Fabrication of four L-slotted Microstrip Antenna for 5.25GHz Band Wireless LAN (5.25GHz 대역의 무선 LAN을 위한 4개의 L-슬롯모양의 마이크로스트립 안테나 설계 및 제작)

  • 이원종;윤중한;강석엽;이화춘;박효달
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.3A
    • /
    • pp.303-310
    • /
    • 2004
  • In this paper, L-shaped slot antenna for 5.15㎓-5.35㎓ is designed, fabricated. and measured. The prototype consist of four L-shaped slot. To obtain suitable bandwidth, the form layer is inserted between ground plane and substrate. Important parameters in the design are four L-slot length. width, position, air-gap height. and feed Point position. From these parameters optimized, a four L-shaped slot antenna is fabricated and measured. The measured results of the antenna are obtained as follows results. The resonant frequency of the fabrication four L-shaped slot antenna is 5.25㎓, bandwidth for approximately 5%(VSWR<1.5) and the gain is 8-9㏈i. The experimental far-field patterns are stable across the pass band. The 3dB bandwidth in H-Plane and I-Plane are 69$^{\circ}$and 62$^{\circ}$, respectively.

A Broadband Microstrip Array Antenna for 3G Smart Antenna System Testbed

  • Rashid, Zainol Abidin Abdul;Islam, Mohammad Tariqul;Jiunn, Ng Kok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.5 no.1
    • /
    • pp.43-59
    • /
    • 2006
  • A compact and broadband $4\times1$ array antenna was developed for 3G smart antenna system testbed. The $4\times1$ uniform linear away antenna was designed to operate at 1.885 to 2.2GHz with a total bandwidth of 315MHz. The array elements were based on the novel broadband L-probe fed inverted hybrid E-H (LIEH) shaped microstrip patch, which offers 22% size reduction to the conventional rectangular microstrip patch antenna. For steering the antenna beam, a commercial variable attenuator (KAT1D04SA002), a variable phase shifter (KPH350SC00) with four units each, and the corporate 4-ways Wilkinson power divider which was fabricated in-house were integrated to form the beamforming feed network. The developed antenna has an impedance bandwidth of 17.32% $(VSWR\leq1.5)$, 21.78% $(VSWR\leq2)$ with respect to center frequency 2.02GHz and with an achievable gain of 11.9dBi. The design antenna offer a broadband, compact and mobile solution for a 3G smart antenna testbed to fully characterized the IMT-2000 radio specifications and system performances.

  • PDF

A Broadband Microstrip Array Antenna for 3G Smart Antenna System Testbed

  • Rashid, Zainol Abidin Abdul;Islam, Mohammad Tariqul;Jiunn, Ng Kok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.7 no.1
    • /
    • pp.41-58
    • /
    • 2007
  • A compact and broadband $4{\times}1$ array antenna was developed for 3G smart antenna system testbed. The $4{\times}1$ uniform linear array antenna was designed to operate at 1.885 to 2.2GHz with a total bandwidth of 315MHz. The array elements were based on the novel broadband L-probe fed inverted hybrid E-H (LIEH) shaped microstrip patch, which offers 22% size reduction to the conventional rectangular microstrip patch antenna. For steering the antenna beam, a commercial variable attenuator (KAT1D04SA002), a variable phase shifter (KPH350SC00) with four units each, and the corporate 4-ways Wilkinson power divider which was fabricated in-house were integrated to form the beamforming feed network. The developed antenna has an impedance bandwidth of 17.32% ($VSWR{\leq}1.5$), 21.78% ($VSWR{\leq}2$) with respect to center frequency 2.02GHz and with an achievable gain of 11.9dBi. The design antenna offer a broadband, compact and mobile solution for a 3G smart antenna testbed to fully characterized the IMT-2000 radio specifications and system performances.

  • PDF

Broad-Band Microstrip Patch Antenna with an L-Shaped Strip (L자 형태의 급전구조를 갖는 광대역 마이크로스트립 패치 안테나)

  • 김종규;이호준;오환술
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.5
    • /
    • pp.827-836
    • /
    • 2001
  • The L-shaped strip is shown to be an attractive feed for the thick microstrip antenna (thickness around 10% of the operating wavelength). The L-strip incorporated with the radiating patch introduces a capacitance suppressing some of the inductance introduced by the strip itself. In this paper, a wideband microstrip patch antenna fed by L-strip for the PCS (1,750~1,850 MHz) and IMT-2000 (1,920~2,170 MHz) broad-band is presented. A two-element array fed by L-strip is also proposed. Both the antennas have stable radiation patterns across the passband. The impedance bandwidth is over 31% (VSWR < 1.5, 615 MHz) of the center frequency. Moreover, both the antennas have about 7 dBi average gain.

  • PDF

A Simple Planar Heptaband Antenna with a Coupling Feed for 4G Mobile Applications

  • Hong, Youngtaek;Tak, Jinpil;Choi, Jaehoon
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.4
    • /
    • pp.239-244
    • /
    • 2015
  • A simple planar heptaband antenna with a coupling feed for 4G mobile applications is proposed. This antenna consists of a folded monopole and a feed strip line on the top plane and an L-shaped line with a coupling plate on the bottom plane. The antenna provides a wide bandwidth to cover the LTE/GSM/UMTS heptaband operation. The measured 6-dB return loss bandwidth is 152 MHz (820-972 MHz) in the lowfrequency band and 1,150 MHz (1,600-2,750 MHz) in the high-frequency band. The overall dimensions of the proposed antenna are $60mm{\times}105mm{\times}1.2mm$.

Compact Triple-Band Monopole Antenna for WLAN/WiMAX-Band USB Dongle Applications

  • Shi, Ya Wei;Xiong, Ling;Chen, Meng Gang
    • ETRI Journal
    • /
    • v.37 no.1
    • /
    • pp.21-25
    • /
    • 2015
  • A miniaturized triple-band antenna suitable for wireless USB dongle applications is proposed and investigated in this paper. The presented antenna, simply consisting of a circular-arc-shaped stub, an L-shaped stub, a microstrip feed line, and a rectangular ground plane has a compact size of $16mm{\times}38.5mm$ and is capable of generating three separate resonant modes with very good impedance matching. The measurement results show that the antenna has several impedance bandwidths for S11 ${\leq}$ -10 dB of 260 MHz (2.24 GHz to 2.5 GHz), 320 MHz (3.4 GHz to 3.72 GHz), and 990 MHz (5.1 GHz to 6.09 GHz), which can be applied to both 2.4/5.2/5.8 GHz WLAN bands and 3.5/5.5 GHz WiMAX bands. Moreover, nearly-omni-directional radiation patterns and stable gain across the operating bands can be obtained.

Design and Implementation of Dual-Polarized Broadband Antenna for PCS Band and W-CDMA Band (PCS 대역과 W-CDMA 대역 겸용 광대역 이중 편파 안테나 설계 및 구현)

  • Lee, Won-Hui;Jang, Young-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.10
    • /
    • pp.1129-1136
    • /
    • 2008
  • In this paper, a dual polarized broadband antenna fed by L-shaped strip for the Korea PCS band and W-CDMA band is presented. To analyze the characteristics of the designed antenna, we used commercial simulation tool(HFSS). The designed antenna was fabricated and measured using HP8753D vector network analyzer. The measured impedance bandwidth(VSWR<1.5) is 560 MHz and the measured average gain is 6.56 dBi. The measured isolation characteristic between two ports is -14 dB(min.) $\sim$ -40 dB(max.). These results are proper for the mobile communication application and repeater antenna.

A Study on Validation of Variable Aperture Channel Model: Migration Experiments of Conservative Tracer in Parallel and Wedge-Shaped Fracture

  • Keum, D.K.;Hahn, P.S.;Vandergraaf, T.T.
    • Nuclear Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.245-261
    • /
    • 1998
  • In order to validate the variable aperture channel model that can deal with the non-uniform How rate in flow domain, migration experiments of conservative tracer were performed in two artificial fractures, a parallel and a wedge-shaped fracture. These different fracture shapes were designed to give different flow pattern. The fractures were made from a transparent acrylic plastic plate and a granite slab with dimensions of 10 $\times$ 61 $\times$ 61 cm. Uranine (Fluorescein sodium salt) was used as a conservative tracer. The volumetric flow rates of uranine feed solution were 30 mL/ hr, giving a mean residence time in the fracture of approximately 24 hours for the parallel fracture and 34 hours for the wedge-shaped fracture. The migration plumes of uranine were photographed to obtain profiles in space and time for movement of a tracer in fractures. The photographed migration plume was greatly affected by the geometric shape of fractures. The variable aperture channel model could have predicted the experimental results for the parallel fracture with a large accuracy. It is expected that the variable aperture channel model would be effective to predict the transport of the contaminant, especially, with the flow rate variation in a fracture.

  • PDF