• 제목/요약/키워드: L-M learning algorithm

검색결과 7건 처리시간 0.01초

Face Recognition Based on Improved Fuzzy RBF Neural Network for Smar t Device

  • Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제16권11호
    • /
    • pp.1338-1347
    • /
    • 2013
  • Face recognition is a science of automatically identifying individuals based their unique facial features. In order to avoid overfitting and reduce the computational reduce the computational burden, a new face recognition algorithm using PCA-fisher linear discriminant (PCA-FLD) and fuzzy radial basis function neural network (RBFNN) is proposed in this paper. First, face features are extracted by the principal component analysis (PCA) method. Then, the extracted features are further processed by the Fisher's linear discriminant technique to acquire lower-dimensional discriminant patterns, the processed features will be considered as the input of the fuzzy RBFNN. As a widely applied algorithm in fuzzy RBF neural network, BP learning algorithm has the low rate of convergence, therefore, an improved learning algorithm based on Levenberg-Marquart (L-M) for fuzzy RBF neural network is introduced in this paper, which combined the Gradient Descent algorithm with the Gauss-Newton algorithm. Experimental results on the ORL face database demonstrate that the proposed algorithm has satisfactory performance and high recognition rate.

Dynamic characteristics monitoring of wind turbine blades based on improved YOLOv5 deep learning model

  • W.H. Zhao;W.R. Li;M.H. Yang;N. Hong;Y.F. Du
    • Smart Structures and Systems
    • /
    • 제31권5호
    • /
    • pp.469-483
    • /
    • 2023
  • The dynamic characteristics of wind turbine blades are usually monitored by contact sensors with the disadvantages of high cost, difficult installation, easy damage to the structure, and difficult signal transmission. In view of the above problems, based on computer vision technology and the improved YOLOv5 (You Only Look Once v5) deep learning model, a non-contact dynamic characteristic monitoring method for wind turbine blade is proposed. First, the original YOLOv5l model of the CSP (Cross Stage Partial) structure is improved by introducing the CSP2_2 structure, which reduce the number of residual components to better the network training speed. On this basis, combined with the Deep sort algorithm, the accuracy of structural displacement monitoring is mended. Secondly, for the disadvantage that the deep learning sample dataset is difficult to collect, the blender software is used to model the wind turbine structure with conditions, illuminations and other practical engineering similar environments changed. In addition, incorporated with the image expansion technology, a modeling-based dataset augmentation method is proposed. Finally, the feasibility of the proposed algorithm is verified by experiments followed by the analytical procedure about the influence of YOLOv5 models, lighting conditions and angles on the recognition results. The results show that the improved YOLOv5 deep learning model not only perform well compared with many other YOLOv5 models, but also has high accuracy in vibration monitoring in different environments. The method can accurately identify the dynamic characteristics of wind turbine blades, and therefore can provide a reference for evaluating the condition of wind turbine blades.

Structural damage identification with output-only measurements using modified Jaya algorithm and Tikhonov regularization method

  • Guangcai Zhang;Chunfeng Wan;Liyu Xie;Songtao Xue
    • Smart Structures and Systems
    • /
    • 제31권3호
    • /
    • pp.229-245
    • /
    • 2023
  • The absence of excitation measurements may pose a big challenge in the application of structural damage identification owing to the fact that substantial effort is needed to reconstruct or identify unknown input force. To address this issue, in this paper, an iterative strategy, a synergy of Tikhonov regularization method for force identification and modified Jaya algorithm (M-Jaya) for stiffness parameter identification, is developed for damage identification with partial output-only responses. On the one hand, the probabilistic clustering learning technique and nonlinear updating equation are introduced to improve the performance of standard Jaya algorithm. On the other hand, to deal with the difficulty of selection the appropriate regularization parameters in traditional Tikhonov regularization, an improved L-curve method based on B-spline interpolation function is presented. The applicability and effectiveness of the iterative strategy for simultaneous identification of structural damages and unknown input excitation is validated by numerical simulation on a 21-bar truss structure subjected to ambient excitation under noise free and contaminated measurements cases, as well as a series of experimental tests on a five-floor steel frame structure excited by sinusoidal force. The results from these numerical and experimental studies demonstrate that the proposed identification strategy can accurately and effectively identify damage locations and extents without the requirement of force measurements. The proposed M-Jaya algorithm provides more satisfactory performance than genetic algorithm, Gaussian bare-bones artificial bee colony and Jaya algorithm.

개선된 SOG 기반 고속 세선화 알고리즘($SOG^*$) (Fast Thinning Algorithm based on Improved SOG($SOG^*$))

  • 이찬희;정순호
    • 정보처리학회논문지B
    • /
    • 제8B권6호
    • /
    • pp.651-656
    • /
    • 2001
  • 본 논문은 기존의 신경망을 이용한 세선화 방법 중에서 자기 구성 그래프(Self-Organized Graph:SOG) 세선화 기법의 우수한 세선화 결과를 유지하면서, 수행 속도를 향상시키기 위하여 Kohonen Features Map의 새로운 점증 기법을 변형된 SOG에 적용한 개선된 SOG(Improved SOG:$SOG^*$) 세선화 기법을 제안한다. 실험 결과로써 숫자와 문자 모두 기존의 SOG와 같은 우수한 세선화 결과를 나타내며, O((logM)3)의 시간 복잡도를 가지는 속도 향상을 이루었다. 따라서 본 논문에서 제안한 방법은 숫자 또는 문자 인식에 있어 특징 추출의 빠른 전처리 과정으로 사용할 수 있다.

  • PDF

게이트 심근 SPECT 분석 소프트웨어의 개발과 좌심실 수축 기능 평가 (Development of Gated Myocardial SPECT Analysis Software and Evaluation of Left Ventricular Contraction Function)

  • 이병일;이동수;이재성;정준기;이명철;최흥국
    • 대한핵의학회지
    • /
    • 제37권2호
    • /
    • pp.73-82
    • /
    • 2003
  • 목적: 게이트 심근 SPECT 영상 데이터에서 좌심실을 분할하고 단위영상 각각의 심실부피를 계산하는 소프트웨어를 개발하였다. 개발한 소프트웨어에서 얻은 구혈률을 상용 소프트웨어QGS (Quantitative Gated SPECT)에서 산출한 값과 비교하여 검증하였다. 대상 및 방법: 게이트 심근 SPECT를 시행하여 구혈률 15%-80%, 확장기말 부피는 49 mL-293 mL, 수축기말 부피는 8 mL-250 mL인 40명의 영상데이터를 사용하여 이 연구에서 개발한 CSA (Cardiac SPECT Analyzer)로 구혈률과 부피를 산출하여 QGS로 얻은 결과와 비교하였다. 같은 영상을 CSA로 두 번 분석하여 구혈률과 부피가 같은 값이 나오는지 보고, 26명의 환자에서 같은 자리에서 두 번 이어서 얻은 게이트 SPECT 영상을 CSA로 분석하여 편차를 조사하였다. 결과: CSA측정과 QGS 측정의 상관성은 상관계수가 구혈률, 확장기말 부피, 수축기말 부피 각각 0.97, 0.92, 0.96이었고 Bland Altman 도표에 치우침 없이 2표준편차가 구혈률의 경우 10.1%이었다. 같은 영상에 대한 CSA 2회 측정 결과의 상관은 0.96, 0.99, 0.99 이었고 구혈률의 2표준편차는 3.4%이었다. 두 번 연속 촬영한 영상으로 CSA 분석한 결과 상관계수는 0.89, 0.97, 0.98, 이었고 변이계수는 8.2%, 5.4mL, 8.5mL, Bland Altman 도표 2표준편차는 구혈률의 경우 10.6%이었다. 결론: 게이트 심근 SPECT에서 얻은 영상으로 구혈률을 측정할 수 있는 소프트웨어를 개발하였다. 이 소프트웨어로 얻은 구혈률, 화장기말 부피, 수축기말 부피는 정확하며 정밀하였다. 구혈률의 2표준편차는 10.6%이었다.

GOCI-II 대기상한 반사도와 기계학습을 이용한 남한 지역 시간별 에어로졸 광학 두께 산출 (Retrieval of Hourly Aerosol Optical Depth Using Top-of-Atmosphere Reflectance from GOCI-II and Machine Learning over South Korea)

  • 양세영;최현영;임정호
    • 대한원격탐사학회지
    • /
    • 제39권5_3호
    • /
    • pp.933-948
    • /
    • 2023
  • 대기 중 에어로졸은 인체에 악영향을 끼칠 뿐 아니라 기후 시스템에도 직간접적인 영향을 미치므로 에어로졸의 특성과 시공간적인 분포에 대한 이해는 매우 중요하다. 이를 위해 위성기반 관측을 통해 에어로졸 광학 두께(Aerosol Optical Depth, AOD)를 산출하여 에어로졸을 모니터링하는 다양한 연구가 수행되어 왔다. 하지만 이는 주로 조견표를 활용한 역 산출 알고리즘에 기반하여 이루어지기 때문에 많은 계산량을 요구하며 불확실성이 존재한다. 따라서, 본 연구에서는 Geostationary Ocean Color Imager-II (GOCI-II)의 대기상한반사도와 30일 동안의 대기상한반사도 중 최솟값과 관측 시점 값의 차이 값, 수치 모델 기반 기상학적 변수 등을 활용하여 기계학습 기반 고해상도 AOD 직접 산출 알고리즘을 개발하였다. Light Gradient Boosting Machine (LGBM) 기법이 사용되었으며, 추정된 결과는 지상 관측 자료인 Aerosol Robotic Network (AERONET) AOD를 활용하여 랜덤, 시간 및 공간별 N-fold 교차검증을 통해 검증되었다. 세 가지 교차검증 결과 R2=0.70-0.80, RMSE=0.08-0.09, 기대오차(Expected Error, EE) 안에 있는 비율은 75.2-85.1% 수준으로 안정적인 성능을 보였다. Shapley Additive exPlanations (SHAP) 분석에서는 반사도 관련 변수들이 기여도의 상위권 대부분을 차지하고 있는 것을 통해 반사도 자료가 AOD 추정에 많은 기여를 하는 것을 확인하였다. 서울과 울산 지역에 대한 시간 별 AOD의 공간 분포를 분석한 결과, 개발된 LGBM 모델은 시간의 흐름에 따라 AERONET AOD 값과 유사한 수준으로 AOD를 추정하고 있었다. 이를 통해 높은 시공간 해상도(i.e., 시간별, 250 m)에서의 AOD 산출이 가능함을 확인하였다. 또한, 산출 커버리지 비교에서 LGBM 모델의 평균 산출 빈도가 GOCI-II L2 AOD 산출물 대비 8.8%가량 증가한 것을 통해 기존 물리모델기반 AOD 산출 과정에서 발생하던 밝은 지표면에 대한 과도한 마스킹의 문제점을 개선시킨 것을 확인하였다.

심층신경망과 천리안위성 2A호를 활용한 지상기온 추정에 관한 연구 (Estimation for Ground Air Temperature Using GEO-KOMPSAT-2A and Deep Neural Network)

  • 엄태윤;김광년;조용한;송근용;이윤정;이윤곤
    • 대한원격탐사학회지
    • /
    • 제39권2호
    • /
    • pp.207-221
    • /
    • 2023
  • 본 연구는 천리안위성 2A호의 Level 1B (L1B) 정보를 사용해 지상기온을 추정하기 위한 심층신경망(deep neural network, DNN) 기법을 적용하고 검증을 실시하였다. 지상기온은 지면으로부터 1.5 m 높이의 대기온도로 일상생활뿐만 아니라 폭염이나 한파와 같은 이슈에 밀접한 관련을 갖는다. 지상기온은 지표면 온도와 대기의 열 교환에 의해 결정되므로 위성으로부터 산출된 지표면 온도(land surface temperature, LST)를 이용한 지상기온 추정 연구가 활발하였다. 하지만 천리안위성 2A호 산출물 LST는 Level 2 정보로 구름영향이 없는 픽셀만 산출되는 한계가 있다. 따라서 본 연구에서는 Advanced Meteorological Imager 센서에서 측정된 원시데이터에 오직 복사와 위치보정을 마친 L1B 정보를 사용해 지상기온을 추정하기 위한 DNN 모델을 제시하고 그 성능을 가늠하기 위해 위성 LST와 지상관측 기온 사이의 선형회귀모델을 기준모델로 사용하였다. 연구기간은 2020년부터 2022년까지 3년으로 평가기간 2022년을 제외한 기간은 훈련기간으로 설정했다. 평가지표는 기상청의 종관기상관측소에서 정시에 관측된 기온정보로 평균 제곱근 오차를 사용하였다. 관측지점에서 추출된 픽셀 중 손실된 픽셀의 비율은 LST는 57.91%, L1B는 1.63%를 보였으며 LST의 비율이 낮은 이유는 구름의 영향 때문이다. 제안한 DNN의 구조는 16개 L1B 자료와 태양정보를 입력 받는 층과 은닉층 4개, 지상기온 1개를 출력하는 층으로 구성하였다. 연구결과 구름의 영향이 없는 경우 DNN 모델이 root mean square error (RMSE) 2.22℃로 기준모델의 RMSE 3.55℃ 보다 낮은 오차를 보였고, 흐린 조건을 포함한 총 RMSE는 3.34℃를 나타내면서 구름의 영향을 제거할 수 있을 것으로 보였다. 하지만 계절과 시간에 따른 분석결과 여름과 겨울철에 모델의 결정계수가 각각 0.51과 0.42로 매우 낮게 나타났고 일 변동의 분산이 0.11과 0.21로 나타났다. 가시채널을 고려해 태양 위치정보를 추가한 결과에서 결정계수가 0.67과 0.61로 개선되었고 시간에 따른 일 변동의 분산도 0.03과 0.1로 감소하면서 모든 계절과 시간대에 더 일반화된 모델을 생성할 수 있었다.