• Title/Summary/Keyword: L-Ascorbic acid

Search Result 890, Processing Time 0.027 seconds

Effects of Combined Treatment with Ultrasound and Ascorbic Acid on the Storage Qualities of Fresh-cut 'Jonathan'Apples (초음파와 ascorbic acid의 병용처리가 신선절단 '홍옥' 사과의 저장 중 품질에 미치는 영향)

  • Jang, Ji-Hyun;Moon, Kwang-Deog
    • Food Science and Preservation
    • /
    • v.17 no.2
    • /
    • pp.202-207
    • /
    • 2010
  • The effects of ultrasound treatment, in combination with ascorbic acid, on the quality of fresh-cut 'Jonathan' apples was investigated. Prepared apple slices were ultrasonicated in distilled water (US) or in 1%(w/v) ascorbic acid solution (UA) and the other samples were just dipped in 1%(w/v) ascorbic acid solution (AA). All samples were stored at$10^{\circ}C$ for 12 days. UA-treated samples showed high $L^{*}$ and hue values and low $a^{*}$, $b^{*}$, chroma, and ${\Delta}E$ value. Both control and US-treated samples showed considerable browning. A significant inhibition of polyphenol oxidase activity was observed after UA treatment. The level of total phenolics in UA-treated samples was higher on the day of treatment compared with other samples. Total soluble solids, pH, titratable acidity, and gas concentrations were similar in all samples. This study demonstrated that the simultaneous treatment of ultrasound and ascorbic acid was effective in preventing enzymatic browning of fresh-cut 'Jonathan' apples and maintaining total phenolics contents.

Effects of Ultrasound and Ascorbic acid Cotreatment on Browning of Fresh-cut 'Tsugaru' Apples (초음파 및 Ascorbic acid 병용처리가 신선절단 '쓰가루' 사과의 갈변에 미치는 영향)

  • Cho, Jeong-Seok;Jeong, Moon-Cheol;Moon, Kwang-Deog
    • Food Science and Preservation
    • /
    • v.19 no.3
    • /
    • pp.323-327
    • /
    • 2012
  • The effects of ultrasound and ascorbic acid cotreatment on the browning inhibition and microbial growth of fresh-cut Tsugaru apples were investigated. The prepared samples were dipped in distilled water (Cont) or 1% (w/v) ascorbic acid solution (AA) and were then ultrasonicated in distilled water (US) or 1% (w/v) ascorbic acid solution (AA+US). The samples were then packed in a 0.04mm polypropylene bag ($20{\times}15$ cm) and were stored at $10^{\circ}C$ for eight days. The AA+US treated samples showed high $L^*$ and low $a^*$, $b^*$ values as well as inactivated PPO activity. The growth of the total aerobic bacteria also inhibited the AA+US treated samples more. The physicochemical properties were not different among all the samples. It was demonstrated in this paper that the ultrasonication treatment with ascorbic acid prevented the enzymatic browning of and microbial growth in fresh-cut Tsugaru apples.

Optimization of Ascorbic Acid-2-Phosphate Production from Ascorbic Acid Using Resting Cell of Brevundimonas diminuta

  • Shin, Woo-Jung;Kim, Byung-Yong;Bang, Won-Gi
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.769-773
    • /
    • 2007
  • With the aim to produce ascorbic acid-2-phosphate(AsA-2-P) from L-ascorbic acid(AsA, Vitamin C), nine bacteria conferring the ability to transform AsA to AsA-2-P were isolated from soil samples alongside known strains from culture collections. Most isolates were classified to the genus Brevundimonas by 16S phylogenetic analysis. Among them, Brevundimonas diminuta KACC 10306 was selected as the experimental strain because of its the highest productivity of AsA-2-P. The optimum set of conditions for the AsA-2-P production from AsA using resting cells as the source of the enzyme was also investigated. The optimum cultivation time was 16 h and the cell concentration was 120g/l(wet weight). The optimum concentrations of AsA and pyrophosphate were 550mM and 450mM, respectively. The most effective buffer was 50mM sodium formate. The optimum pH was 4.5 and temperature was $40^{\circ}C$. Under the above conditions, 27.5g/l of AsA-2-P was produced from AsA after 36 h of incubation, which corresponded to a 19.7% conversion efficiency based on the initial concentration of AsA.

Nano-capsulation of L-Ascorbic Acid in Nonaqueous System (L-Ascorbic Acid의 비수계 나노 캡슐화)

  • Hong, Joo-Hee;Song, Ki-Se;Kim, Kyoung-Jun;Lee, Chae-Seong;An, Byeong-Min;Kim, Byoung-Sik
    • Applied Chemistry for Engineering
    • /
    • v.19 no.6
    • /
    • pp.604-608
    • /
    • 2008
  • In this work, the basic research for nano-capsulation of L-ascorbic acid (Vitamin C) in nonaqueous system was carried out. 500 nm-sized nano-capsules were prepared in nonaqueous system, and the emulsified capsule had mean size of 410 nm. The stability test on the temperature and the storage periods was performed at 4, 20, and $30^{\circ}C$ for 30 days. After 5 days, L-ascorbic acid was extricated 5.1, 9.3, and 12.5% at each temperature, but only 1~2 % was extricated after the time span. Likewise, the results of the skin susceptibility on women and men, each 10 persons, revealed that the very thin allergy was shown from only a woman after 2 days, but it was not shown from the others.

Biosynthesis of L-Ascorbic Acid by Microorganisms in Kimchi Fermentation Process

  • Cheigh, Hong-Sik;Rina Yu;Park, Hyun-Jeong;Jun, Hong-Ki
    • Preventive Nutrition and Food Science
    • /
    • v.1 no.1
    • /
    • pp.37-40
    • /
    • 1996
  • Kinchi is and important source of various vitamins, minerals, dietary fiber, organic acids and other nutrients. In order to get a basic information for developing vitamins-rich funtional kimchi, we investigated microorganisms which are capable of synthesis of vitamin C in Kimchi system. Microorganisms isolated from aliquots of kimchi were screened and cultured by using MRS or nutrient agar medium. L-Ascorbic acid produced by microorganism in medium was measured with high performance liquid chromatography. As the result, we isolated two bacteria strins N7 and N5202 preducing L-ascorbic acid from the kimchi system. Morphological and Gram staining experiment showed that N7 was Gram positive bacilli, while N5202 was Gram negative. There were also several bacteria that were considered to synthesizs erythorbic acid which is an analog of ascorbic acid. These results suggested that vitamin C-rich functional food could be developed by using the kimchi microorganisms.

  • PDF

Characteristics of L-Ascorbic Acid Encapsulated BGsome and its Stabilization Effect (L-ascorbic acid가 포집된 BGsome의 특성 및 안정화 효과)

  • Hwang, Sue-Yun;Jin, Byung-Suk
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.313-320
    • /
    • 2011
  • Encapsulation of L-ascorbic acid(AA) into BGsome was attempted to improve its stability. BGsome is a bio-compatible vesicular system prepared by dispersion of hydrated liquid crystalline phase formed through hydration of 1,3-butylene glycol(BG)-dissolved lecithin with an aqueous solution containing hydrophilic component. The characteristics of AA encapsulated BGsome, such as droplet size, surface charge, and solution appearance, was investigated. The concentration of AA solution had considerable effect on droplet size and surface charge of BGsome. Several tens nanometer droplet made by sonication treatment did not showed any change of size with storage time. Stability of AA was improved by encapsulation into BGsome, which was verified through DPPH test and HPLC assay.

Whitening Effect of 3-O-Cetyl-L-Ascorbic Acid (3-O-Cetyl-L-Ascorbic Acid의 미백 개선 효과)

  • Park, Chang-Min;Bae, Ji-Young;Joung, Min-Seok;Choi, Jong-Wan
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.37 no.1
    • /
    • pp.91-96
    • /
    • 2011
  • Deficiency of collagen regeneration, denaturalization of fibers, increased melanin synthesis and reactive oxygen species are important factors inducing deterioration of healthy skin function. They induce freckles and decrease in skin elasticity. Vitamin C, vitamin A and their derivatives have been used as cosmetic ingredients for improvement of these problems but they have various problems. We have been developing the various derivatives of these ingredients. In this study, we investigated whitening effect of 3-o-cetyl-L-ascorbic acid (VCCE), a new vitamin C derivative. The VCCE inhibited melanogenesis in a dose dependent manner(44 % at $20\;{\mu}g/mL $) and tyrosinase expression. For 8 weeks, we also investigated skin brightening effect of VCCE on pigmented spots in UV-irradiated human skin. In results, VCCE showed a statistically significant skin whitening effect by mechanical and visual evaluation. Taken together, our findings suggest that the VCCE has potential benefits as an active ingredient for whitening cosmetics.

Effects of Oxalic and L-ascorbic acids on Iron Removal form Iron-bearing Illite (일라이트 분체 내에 함유된 산화철 제거에 옥살산과 L-아스코르브산이 미치는 영향)

  • Lee, Won-Pyo;Kang, Il-Mo;Moon, Hi-Soo
    • Economic and Environmental Geology
    • /
    • v.40 no.2 s.183
    • /
    • pp.141-151
    • /
    • 2007
  • This study was focused on iron removal from illite by L-ascorbic and oxalic acids. Iron has been shown as a secondary mineral such as iron oxides and hydroxides in illite ores. It is also known as a primary agent to degrade brightness index of the ores. Methods such as physical separation and chemical leaching with strong inorganic acids have been widely used to remove the iron from the ores. However, these methods are expensive and give rise to environmental problems. In this study, we examined an alternative method using solutions with different set of combination of sulfuric, hydrochloric, L-ascorbic, and oxalic acids. Compared to chemical treatments with only inorganic acids, our results demonstrate that an addition of L-ascorbic acid in inorganic acids results in decreasing both total concentrations of the inorganic acids and time for the treatments. The treatment with 0.15 M L-ascorbic acid and 0.25 M sulfuric acid in solution for 60 min significantly improved the brightness index from 42.4% to 74.4%. This improvement is similar to that of treatment with only 2.5 M sulfuric acid alone for 150 min. Mineralogical and chemical analyses were performed to compare the effect of acid leaching on illite powders. No obvious differences are observed in the mineralogical characteristics and particle size distributions of the samples. These results suggest that the treatment with the addition of L-ascorbic acid in sulfuric acid could effectively remove iron without modifying the physicochemical properties of illite under conditions used in this study.

Identification of L-Ascorbic Acid 2-Ο-$\alpha$-Glucoside, a Stable Form of Ascorbic Acid, in Kimchi

  • JUN, HONG-KI;KYUNG-MI BAE;YOUNG-HEE KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.710-713
    • /
    • 1998
  • A material with the same high performance liquid chromatography (HPLC) retention profile as authentic ascorbic acid 2-Ο-$\alpha$-glucoside (AA-2G) was detected in kimchi. This material was identified as AA-2G by testing its susceptibility to $\alpha$-glucosidase hydrolysis, the HPLC profile, and through the elementary analysis. Among several strains of bacteria isolated from fermented kimchi, four strains could produce cydodextrin glucanotransferase (CGTase) which catalyzes the transglucosylation reaction of ascorbic acid. By using starch as the glycosyl donor, AA-2G was produced as the major product through this reaction.

  • PDF

Anti-wrinkle effect of 3-O-cetyl-L-ascorbic acid (3-O-cetyl-L-ascorbic acid의 주름 개선 효과)

  • Park, Chang-Min;Lee, Soon-Young;Joung, Min-Seok;Choi, Jong-Wan
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.4
    • /
    • pp.303-309
    • /
    • 2008
  • Deficiency of collagen regeneration, denaturalization of elastic fibers, and promotion of reactive oxygen species formation are important factors for deterioration of skin function. They induce wrinckle formation and decrease skin elasticity. Vitamin C and its derivatives have been used as cosmetic ingredients for anti-aging effects but their chemical instability has been a major problem. In an attempt to develop a novel anti-aging agent with a improved stability and bioactivity, the anti-wrinkle effect of 3-O-cetyl-L-ascorbic acid (VCCE), a new vitamin C derivative, was investigated in this study. VCCE increased procollagen type-1 synthesis in a dose-dependent manner (149% at 0.002%) in cultured fiboroblasts. Its potent anti-wrinkle effect was confirmed in vivo by analyzing human skin replica by a visiometer and the PRIMOS system. It did not cause any irritation in human patch test. Taken together, our findings suggest that the VCCE has potential benefits applicable to cosmetics for anti-wrinkle effects.