• 제목/요약/키워드: L" g growth model

Search Result 163, Processing Time 0.029 seconds

Effects of Glucose and Ammonium Concentrations in Continuous Culture for Poly-$\beta$-hydroxybutyrate Production (Poly-$\beta$-hydroxybutyrate 생산을 위한 연속배양에서 포도당 및 암모늄 농도의 영향)

  • 이용우;유영제
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.5
    • /
    • pp.597-606
    • /
    • 1992
  • Effects of dilution rate, inlet glucose and ammonium chloride concentrations on ,he performance of continuous culture of Alcaligenes eutrQPhus for poly-p-hydroxybutyrate (PHB) production were investigated. When inlet substrate concentrations were maintained constant (inlet glucose concentration = 20 g/l, inlet ammonium chloride concentration = 2 g/l), growth rate of residual biomass and PHB production rate showed its maximum at $0.1h^{-1}$ and $0.06h^{-1}$, respectively, and washout at $0.13h^{-1}$. PHB content decreased from 50% to 25% by increasing dilution rate, while specific PHB production rate increased continuously. Cell mass and PHB concentration gave its maximum values at inlet ammonium chloride concentration of 2 g/l and thereafter decreased, which showed the existence of substrate inhibition by ammonium. When inlet glucose concentration was 30 g/l, cell mass reached its maximum value, while PHB concentration increased continuously. The parameters of kinetic model were evaluated by the graphical and parameter estimation methods. The computer simulation results for the effects of dilution rate, inlet glucose and ammonium chloride concentrations fitted the experimental data very well.

  • PDF

Potential Probiotic Properties of Lactobacillus johnsonii IDCC 9203 Isolated from Infant Feces (유아 분변에서 분리한 Lactobacillus johnsonii IDCC 9203의 잠재적 프로바이오틱 특성)

  • Lee, Seung-Hun;Yang, Eun-Hee;Kwon, Hyuk-Sang;Kang, Jae-Hoon;Kang, Byung-Hwa
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.2
    • /
    • pp.121-127
    • /
    • 2008
  • A strain IDCC 9203 isolated from infant feces was identified as Lactobacillus johnsonii on the basis of 16S rDNA sequence analysis. L. johnsonii IDCC 9203 was highly resistant to acid (MRS broth at pH 2.3) and bile (MRS broth with 0.3% oxgall). The antibacterial activities of L. johnsonii IDCC 9203 was examined against Salmonella typhimurium KCTC 2054. The growth of S. typhimurium KCTC 2054 was inhibited by the cell-free culture supernatant (at pH 4.0) of L. johnsonii IDCC 9203 as well as by the respective control (MRS broth at pH 4.0). Antimicrobial effect against S. typhimurium KCTC 2054 of L. johnsonii IDCC 9203 was probably due to the lactic acid. By an in vitro cell adhesion model, L. johnsonii IDCC 9203 preincubated or coincubated with Caco-2 cells reduced the adhesion of S. typhimurium KCTC 2054 to Caco-2 cells by 74% or 47.1%, respectively. Also in an in vivo model, L. johnsonii IDCC 9203 was colonized in mice intestines which were disrupted by ampicillin treatment. Its proliferation in the mice intestines reduced abnormal salmonella growth from $10^9CFU/g$ feces to $10^5CFU/g$ feces as an indigenous level. The results obtained in this study suggest that L. johnsonii IDCC 9203 may be a potential probiotic strain.

Biokinetics of Protein Degrading Clostridium cadaveris and Clostridium sporogenes in Batch and Continuous Mode of Operations

  • Koo, Taewoan;Jannat, Md Abu Hanifa;Hwang, Seokhwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.533-539
    • /
    • 2020
  • A quantitative real-time polymerase chain reaction (QPCR) was applied to estimate biokinetic coefficients of Clostridium cadaveris and Clostridium sporogenes, which utilize protein as carbon source. Experimental data on changes in peptone concentration and 16S rRNA gene copy numbers of C. cadaveris and C. sporogenes were fitted to model. The fourth-order Runge-Kutta approximation with non-linear least squares analysis was employed to solve the ordinary differential equations to estimate biokinetic coefficients. The maximum specific growth rate (μmax), half-saturation concentration (Ks), growth yield (Y), and decay coefficient (Kd) of C. cadaveris and C.sporogenes were 0.73 ± 0.05 and 1.35 ± 0.32 h-1, 6.07 ± 1.52 and 5.67 ± 1.53 g/l, 2.25 ± 0.75 × 1010 and 7.92 ± 3.71 × 109 copies/g, 0.002 ± 0.003 and 0.002 ± 0.001 h-1, respectively. The theoretical specific growth rate of C. sporogenes always exceeded that of C. cadaveris at peptone concentration higher than 3.62 g/l. When the influent peptone concentration was 5.0 g/l, the concentration of C.cadaveris gradually decreased to the steady value of 2.9 × 1010 copies/ml at 4 h Hydraulic retention time (HRT), which indicates a 67.1% reduction of the initial population, but the wash out occurred at HRTs of 1.9 and 3.2 h. The 16S rRNA gene copy numbers of C. sporogenes gradually decreased to steady values ranging from 1.1 × 1010 to 2.9 × 1010 copies/ml. C. sporogenes species was predicted to wash out at an HRT of 1.6 h.

Development and Validation of a Predictive Model for Listeria monocytogenes Scott A as a Function of Temperature, pH, and Commercial Mixture of Potassium Lactate and Sodium Diacetate

  • Abou-Zeid, Khaled A.;Oscar, Thomas P.;Schwarz, Jurgen G.;Hashem, Fawzy M.;Whiting, Richard C.;Yoon, Kisun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.7
    • /
    • pp.718-726
    • /
    • 2009
  • The objective of this study was to develop and validate secondary models that can predict growth parameters of L. monocytogenes Scott A as a function of concentrations (0-3%) of a commercial potassium lactate (PL) and sodium diacetate (SDA) mixture, pH (5.5-7.0), and temperature (4-37DC). A total of 120 growth curves were fitted to the Baranyi primary model that directly estimates lag time (LT) and specific growth rate (SGR). The effects of the variables on L. monocytogenes Scott A growth kinetics were modeled by response surface analysis using quadratic and cubic polynomial models of the natural logarithm transformation of both LT and SGR. Model performance was evaluated with dependent data and independent data using the prediction bias ($B_f$) and accuracy factors ($A_f$) as well as the acceptable prediction zone method [percentage of relative errors (%RE)]. Comparison of predicted versus observed values of SGR indicated that the cubic model fits better than the quadratic model, particularly at 4 and $10^{\circ}C$. The $B_f$and $A_f$for independent SGR were 1.00 and 1.08 for the cubic model and 1.08 and 1.16 for the quadratic model, respectively. For cubic and quadratic models, the %REs for the independent SGR data were 92.6 and 85.7, respectively. Both quadratic and cubic polynomial models for SGR and LT provided acceptable predictions of L. monocytogenes Scott A growth in the matrix of conditions described in the present study. Model performance can be more accurately evaluated with $B_f$and $A_f$and % RE together.

Effects of hydrodynamics and coagulant doses on particle aggregation during a rapid mixing

  • Park, Sang-Min;Heo, Tae-Young;Park, Jun-Gyu;Jun, Hang-Bae
    • Environmental Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.365-372
    • /
    • 2016
  • The effects of hydrodynamics and alum dose on particle growth were investigated by monitoring particle counts in a rapid mixing process. Experiments were performed to measure the particle growth and breakup under various conditions. The rapid mixing scheme consisted of the following operating parameters: Velocity gradient (G) ($200-300s^{-1}$), alum dose (10-50 mg/L) and mixing time (30-180 s). The Poisson regression model was applied to assess the effects of the doses and velocity gradient with mixing time. The mechanism for the growth and breakup of particles was elucidated. An increase in alum dose was found to accelerate the particle count reduction. The particle count at a G value of $200s^{-1}$ decreased more rapidly than those at $300s^{-1}$. The growth and breakup of larger particles were more clearly observed at higher alum doses. Variations of particles due to aggregation and breakup of micro-flocs in rapid mixing step were interactively affected by G, mixing time and alum dose. Micro-flocculation played an important role in a rapid mixing process.

Foreign Direct Investment and Economic Growth in Asia: Comparative analysis of China, India, Vietnam and Korea (FDI가 아시아 국가의 경제성장에 미치는 영향: 중국·인도·베트남·한국 비교)

  • Wang, Jingjing;Choi, Chang Hwan
    • Korea Trade Review
    • /
    • v.44 no.3
    • /
    • pp.15-24
    • /
    • 2019
  • The study conducted an empirical analysis of the impact of FDI on economic growth in four Asian countries: China, India, Vietnam and Korea. With panel data for the 1990-2017 period, the research model was developed for foreign direct investment (FDI), export amount (EX), government expenditure (G), exchange rate (EXR), and labourable population (L). The panel analysis results show that the increase in FDI, exports, government expenditure, labourable population significantly increased economic growth. The comparison analysis for each country revealed that FDI, exports and government expenditure significantly affect economic growth in China, that exports and government expenditure significantly affect economic growth in Korea, that FDI significantly affected economic growth in Vietnam, and that the increase in the workforce contributed to economic development in India. This paper characterized the different factors of economic growth in the four Asian countries. These results suggest that setting economic priorities to suit the specific economic conditions of each country is a shortcut to more efficient economic growth.

A kinetic study of 4-chlorophenol biodegradation by the novel isolated Bacillus subtilis in batch shake flask

  • Sandhibigraha, Sudhansu;Chakraborty, Sagnik;Bandyopadhyay, Tarunkanti;Bhunia, Biswanath
    • Environmental Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.62-70
    • /
    • 2020
  • Here in this work, a 4-chlorophenol (4-CP)-degrading bacterial strain Bacillus subtilis (B. subtilis) MF447840.1 was isolated from the drain outside the Hyundai car service center, Agartala, Tripura, India. 16S rDNA technique used carried out for genomic recognition of the bacterial species. Isolated bacterial strain was phylogenetically related with B. subtilis. This strain was capable of breaking down both phenol and 4-CP at the concentration of 1,000 mg/L. Also, the isolated strain can able to metabolize five diverse aromatic molecules such as 2-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, 4-nitrophenol, and pentachlorophenol for their growth. An extensive investigation was performed to portray the kinetics of cell growth along with 4-CP degradation in the batch study utilizing 4-CP as substrate. Various unstructured models were applied to evaluate the intrinsic kinetic factors. Levenspiel's model demonstrates a comparatively enhanced R2 value (0.997) amongst every analyzed model. The data of specific growth rate (μ), saturation constant (KS), and YX/S were 0.11 h-1, 39.88 mg/L, along with 0.53 g/g, correspondingly. The isolated strain degrades 1,000 mg/L of 4-CP within 40 h. Therefore, B. subtilis MF447840.1 was considered a potential candidate for 4-CP degradation.

Effect of Sulfur Powder and Citric Acid on Arsenic Phytoremediation Using Pteris multifida in Forest Soil (봉의 꼬리를 이용한 수림지 토양의 비소정화에 미치는 유황분말과 구연산의 영향)

  • Kwon, Hyuk Joon;Cho, Ju Sung;Lee, Cheol Hee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.1
    • /
    • pp.1-12
    • /
    • 2014
  • This study was carried out not only to identify the optimum concentrations of sulfur powder and citric acid treated for improving arsenic absorption of Pteris multifuda known as hyperaccumulator of arsenic, but also to develop arsenic purification model in the forest soil. After applying sulfur powder (0, 30, 45, $60g{\cdot}m^{-2}$) and citric acid (0, 200, 400, $800g{\cdot}m^{-2}$) in the forest soil contaminated with heavy metals, P. multifuda was planted and cultivated for 16 weeks. And then the growth and arsenic contents of plants were analyzed. In the result of research, the growth of P. mulifuda, except plant width, cultivated in soils treated with sulfur powder and citric acid was relatively lower than control. The accumulated amount of arsenic in aerial parts of P. multifuda ($1822.2mg{\cdot}kg^{-1}$) cultivated in soils treated with $200g{\cdot}m^{-2}$ citric acid was improved 62.5% against the control. And the accumulated amount of arsenic per 1 $m^2$ ($20.1mg{\cdot}m^{-2}$) was the greatest in $200g{\cdot}m^{-2}$ citric acid treatment. Translocation rate (TR) was higher in all acid treatment compare to control, and was the best in $200g{\cdot}m^{-2}$ citric acid treatment (0.95) especially. It showed that the arsenic absorbed in underground parts was transferred fast to aerial parts. Therefore, $200g{\cdot}m^{-2}$ citric acid treatment in the soil is recommended for arsenic purification using P. multifuda.

Monitoring Onion Growth using UAV NDVI and Meteorological Factors

  • Na, Sang-Il;Park, Chan-Won;So, Kyu-Ho;Park, Jae-Moon;Lee, Kyung-Do
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.4
    • /
    • pp.306-317
    • /
    • 2017
  • Unmanned aerial vehicles (UAVs) became popular platforms for the collection of remotely sensed data in the last years. This study deals with the monitoring of multi-temporal onion growth with very high resolution by means of low-cost equipment. The concept of the monitoring was estimation of multi-temporal onion growth using normalized difference vegetation index (NDVI) and meteorological factors. For this study, UAV imagery was taken on the Changnyeong, Hapcheon and Muan regions eight times from early February to late June during the onion growing season. In precision agriculture frequent remote sensing on such scales during the vegetation period provided important spatial information on the crop status. Meanwhile, four plant growth parameters, plant height (P.H.), leaf number (L.N.), plant diameter (P.D.) and fresh weight (F.W.) were measured for about three hundred plants (twenty plants per plot) for each field campaign. Three meteorological factors included average temperature, rainfall and irradiation over an entire onion growth period. The multiple linear regression models were suggested by using stepwise regression in the extraction of independent variables. As a result, $NDVI_{UAV}$ and rainfall in the model explain 88% and 68% of the P.H. and F.W. with a root mean square error (RMSE) of 7.29 cm and 59.47 g, respectively. And $NDVI_{UAV}$ in the model explain 43% of the L.N. with a RMSE of 0.96. These lead to the result that the characteristics of variations in onion growth according to $NDVI_{UAV}$ and other meteorological factors were well reflected in the model.

Validation of Predictive Liquid Model Systems for the Growth of Listeria monocytogenes and Yersinia enterocolitica on Pork at Various Temperatures

  • Rho, Min-Jeong;Chung, Myung-Sub;Kim, Jeong-Weon;Park, Ji-Yong
    • Food Science and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.42-45
    • /
    • 2005
  • The present study was carried out to envisage the aerobic growth of Listeria monocytogenes and Yersinia enterocolitica on pork, which is one of the major meat sources in Korea. The results were compared with the previously developed predictive model systems for the verification of microbial growth in a real situation during pork processing. Pork loin samples (8.0 g, 5 mm thick) were aseptically prepared and inoculated with each pathogen by immersing into the respective inoculums for one min. Each of the samples were then wrapped with PE film and stored at 5, 10, and $15^{\circ}C$ up to 36 days to measure the growth profile of the respective pathogens. The growth parameters were calculated by using Gompertz equation and were compared with the previously reported data. The predicted generation time (GT) of L. monocytogenes at 5, 10 and $15^{\circ}C$ was 28.74, 7.85 and 4.02 hr, respectively, and for Y. enterocolitica was 10.29, 4.74 and 2.50 hr, at the same temperatures respectively. In this study, the GT values predicted on pork were slightly higher than the values predicted in other studies using liquid model systems. Unlike previous reports, both the pathogens were found to grow at $5^{\circ}C$ on pork. This finding recommends the necessity of controlling the growth of both the pathogens during the slaughtering process and distribution.