• 제목/요약/키워드: Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

검색결과 49건 처리시간 0.024초

Expression profiles of microRNAs in skeletal muscle of sheep by deep sequencing

  • Liu, Zhijin;Li, Cunyuan;Li, Xiaoyue;Yao, Yang;Ni, Wei;Zhang, Xiangyu;Cao, Yang;Hazi, Wureli;Wang, Dawei;Quan, Renzhe;Yu, Shuting;Wu, Yuyu;Niu, Songmin;Cui, Yulong;Khan, Yaseen;Hu, Shengwei
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권6호
    • /
    • pp.757-766
    • /
    • 2019
  • Objective: MicroRNAs are a class of endogenous small regulatory RNAs that regulate cell proliferation, differentiation and apoptosis. Recent studies on miRNAs are mainly focused on mice, human and pig. However, the studies on miRNAs in skeletal muscle of sheep are not comprehensive. Methods: RNA-seq technology was used to perform genomic analysis of miRNAs in prenatal and postnatal skeletal muscle of sheep. Targeted genes were predicted using miRanda software and miRNA-mRNA interactions were verified by quantitative real-time polymerase chain reaction. To further investigate the function of miRNAs, candidate targeted genes were enriched for analysis using gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment. Results: The results showed total of 1,086 known miRNAs and 40 new candidate miRNAs were detected in prenatal and postnatal skeletal muscle of sheep. In addition, 345 miRNAs (151 up-regulated, 94 down-regulated) were differentially expressed. Moreover, miRanda software was performed to predict targeted genes of miRNAs, resulting in a total of 2,833 predicted targets, especially miR-381 which targeted multiple muscle-related mRNAs. Furthermore, GO and KEGG pathway analysis confirmed that targeted genes of miRNAs were involved in development of skeletal muscles. Conclusion: This study supplements the miRNA database of sheep, which provides valuable information for further study of the biological function of miRNAs in sheep skeletal muscle.

Differential Gene Expression in GPR40-Overexpressing Pancreatic ${\beta}$-cells Treated with Linoleic Acid

  • Kim, In-Su;Yang, So-Young;Han, Joo-Hui;Jung, Sang-Hyuk;Park, Hyun-Soo;Myung, Chang-Seon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권2호
    • /
    • pp.141-149
    • /
    • 2015
  • "G protein-coupled receptor 40" (GPR40), a receptor for long-chain fatty acids, mediates the stimulation of glucose-induced insulin secretion. We examined the profiles of differential gene expression in GPR40-activated cells treated with linoleic acid, and finally predicted the integral pathways of the cellular mechanism of GPR40-mediated insulinotropic effects. After constructing a GPR40-overexpressing stable cell line (RIN-40) from the rat pancreatic ${\beta}$-cell line RIN-5f, we determined the gene expression profiles of RIN-5f and RIN-40. In total, 1004 genes, the expression of which was altered at least twofold, were selected in RIN-5f versus RIN-40. Moreover, the differential genetic profiles were investigated in RIN-40 cells treated with $30{\mu}M$ linoleic acid, which resulted in selection of 93 genes in RIN-40 versus RIN-40 treated with linoleic acid. Based on the Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG, http://www.genome.jp/kegg/), sets of genes induced differentially by treatment with linoleic acid in RIN-40 cells were found to be related to mitogen-activated protein (MAP) kinase- and neuroactive ligand-receptor interaction pathways. A gene ontology (GO) study revealed that more than 30% of the genes were associated with signal transduction and cell proliferation. Thus, this study elucidated a gene expression pattern relevant to the signal pathways that are regulated by GPR40 activation during the acute period. Together, these findings increase our mechanistic understanding of endogenous molecules associated with GPR40 function, and provide information useful for identification of a target for the management of type 2 diabetes mellitus.

황련해독탕(黃連解毒湯)의 뇌질환 응용 가능성 탐색을 위한 네트워크 약리학적 분석 (Network pharmacological analysis for exploration of the potential application of Hwangryunhaedok-tang for brain diseases)

  • 이세은;임재유;정병우;이병호;임정화;조수인
    • 대한한의학방제학회지
    • /
    • 제28권4호
    • /
    • pp.313-325
    • /
    • 2020
  • Objectives : To explore the associated potential pathways and molecular targets of Hwangryunhaedok-tang(HHT) by the approaches of network pharmacology and bioinformatics in traditional chinese medicine(TCM). Methods : Hwangryunhaedok-tang constituent drugs(Coptidis Rhizoma, CR; Scutellariae Radix, SR; Phellodendri Cortex, PC; Gardeniae Fructus, GF) and their processing types were searched from TCM systems pharmacology(TCMSP). The databases of TCMSP, Kyoto Encyclopedia of Genes and Genomes(KEGG), MCODE and STRING were used to gather information. The network of bioactive ingredients and target gene was constructed by Cytoscape software(version 3.8). Results : A total of 94 HHT active compounds(CR, 12; SR, 35; PC, 33; GF, 14, respectively) were found, and HHT were identified by TCMSP. Applications of KEGG and MCODE analysis indicates that total of 6 bioactive ingredients in the top 10% ranking were obtained and 32 diseases of HHT were screened. The molecular pathway analysis revealed that HHT exerts cancer, inflammation and cerebrovascular diseases effects by acting on several signaling pathway. In addition, HHT found that three genes(e.g. SPIN1, TRIM25, and APP) correlate with the aforementioned diseases. Conclusions : This study showed that network pharmacology analysis is useful to elucidate the complex mechanisms of action of HHT.

Transcriptome Profiling Identifies Genes of Waterlogging-Tolerant and -Sensitive Rapeseeds Differentially Respond to Waterlogging Stress at the Flowering Stage

  • Ji-Eun Lee;Da-Hee An;Kwang-Soo Kim;Young-Lok Cha;Dong-Chil Chang
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.229-229
    • /
    • 2022
  • Rapeseed is a crop that is waterlogging sensitive, and it is necessary to breed waterlogging tolerance varieties. Our study presents the comparative transcriptome changes in two rapeseed lines, i.e., waterlogging-tolerant (tJ8634-B-30,) and - sensitive ('EMS26') lines under control and waterlogging stress treatments at the flowering stage. RNA-sequencing analysis revealed 13,279 differentially expressed genes (DEGs) for 'J8634-B-30' and 8,682 DEGs for 'EMS26' under waterlogging stress condition compared to control. Among DEGs of 'J8634-B-30', 6,818 were up-regulated and 6,461 were down-regulated. On the other hand, among the DEGs of 'EMS26', the number of down-regulated genes (5,240) were higher than that of up-regulated genes (3,442). Gene ontology enrichment analysis showed that DEGs related to glucan metabolic, cell wall, and oxidoreductase activity were significantly changed in 'J8634-B-30'. Kyoto Encyclopedia of Genes and Genomes (KEGG)-based analysis in 'J8634-B-30' identified up-regulated DEGs being involved in MAPK signaling pathways. In addition, the DEGs belonging to mechanisms responding to waterlogging stress, i.e., plant hormones, carbon metabolism, Reactive oxygen species (ROS), Nitric oxide (NO) etc. were compared in rapeseed lines. Several DEGs including ethylene-responsive transcription factor (ERF), constitutive triple response (CTR) (in ethylene signaling pathway), monodehydroascorbate Reductase (MDAR), NADPH oxidase (in ROS pathway), cytochrome c oxidase assembly protein (COX) (in NO pathway) up-regulated in 'J8634-B-30'. These outcomes provided the valuable information for further exploring the genetic mechanism of waterlogging tolerance in rapeseed.

  • PDF

네트워크 약리학을 이용한 윤폐환(潤肺丸)의 COPD 치료 효능 및 작용기전 연구 (Network Pharmacology-based Prediction of Efficacy and Mechanism of Yunpye-hwan Acting on COPD)

  • 김민주;양아람;권빛나;김동욱;배기상
    • 대한본초학회지
    • /
    • 제39권3호
    • /
    • pp.37-47
    • /
    • 2024
  • Objectives : Because predicting the potential efficacy and mechanisms of Korean medicines is challenging due to their high complexity, employing an approach based on network pharmacology could be effective. In this study, network pharmacological analysis was utilized to anticipate the effects of YunPye-Hwan (YPH) in treating Chronic obstructive pulmonary disease (COPD). Methods : Compounds and their related target genes of YPH were gathered from the TCMSP and PubChem databases. These target genes of YPH were subsequently compared with gene sets associated with COPD to assess correlation. Next, core genes were identified through a two-step screening process, and finally, functional enrichment analysis of these core genes was conducted using both Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathways. Results : A total of 15 compounds and 437 target genes were gathered, resulting in a network comprising 473 nodes and 14,137 edges. Among them, 276 genes overlapped with gene sets associated with COPD, indicating a significant correlation between YPH and COPD. Functional enrichment analysis of the 18 core genes revealed biological processes and pathways such as "miRNA Transcription," "Nucleic Acid-Templated Transcription," "DNA-binding Transcription Factor Activity," "MAPK signaling pathway," and "TNF signaling pathway" were implicated. Conclusion : YPH exhibited significant relevance to COPD by modulating cell proliferation, differentiation, inflammation, and cell death pathways. This study could serve as a foundational framework for further research investigating the potential use of YPH in the treatment of COPD.

네트워크 약리학을 활용한 알레르기 비염에서의 몰약의 치료 효능 및 기전 예측 (Network pharmacology-based prediction of efficacy and mechanism of Myrrha acting on Allergic Rhinitis)

  • 임예빈;권빛나;김동욱;배기상
    • 대한한의학회지
    • /
    • 제45권1호
    • /
    • pp.114-125
    • /
    • 2024
  • Objectives: Network pharmacology is an analysis method that explores drug-centered efficacy and mechanism by constructing a compound-target-disease network based on system biology, and is attracting attention as a methodology for studying herbal medicine that has the characteristics for multi-compound therapeutics. Thus, we investigated the potential functions and pathways of Myrrha on Allergic Rhinitis (AR) via network pharmacology analysis and molecular docking. Methods: Using public databases and PubChem database, compounds of Myrrha and their target genes were collected. The putative target genes of Myrrha and known target genes of AR were compared and found the correlation. Then, the network was constructed using STRING database, and functional enrichment analysis was conducted based on the Gene Ontology (GO) Biological process and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathways. Binding-Docking stimulation was performed using CB-Dock. Results: The result showed that total 3 compounds and 55 related genes were gathered from Myrrha. 33 genes were interacted with AR gene set, suggesting that the effects of Myrrha are closely related to AR. Target genes of Myrrha are considerably associated with various pathways including 'Fc epsilon RI signaling pathway' and 'JAK-STAT signaling pathway'. As a result of blinding docking, AKT1, which is involved in both mechanisms, had high binding energies for abietic acid and dehydroabietic acid, which are components of Myrrha. Conclusion: Through a network pharmacological method, Myrrha was predicted to have high relevance with AR by regulating AKT1. This study could be used as a basis for studying therapeutic effects of Myrrha on AR.

A Study on Transcriptome Analysis Using de novo RNA-sequencing to Compare Ginseng Roots Cultivated in Different Environments

  • Yang, Byung Wook
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 춘계학술발표회
    • /
    • pp.5-5
    • /
    • 2018
  • Ginseng (Panax ginseng C.A. Meyer), one of the most widely used medicinal plants in traditional oriental medicine, is used for the treatment of various diseases. It has been classified according to its cultivation environment, such as field cultivated ginseng (FCG) and mountain cultivated ginseng (MCG). However, little is known about differences in gene expression in ginseng roots between field cultivated and mountain cultivated ginseng. In order to investigate the whole transcriptome landscape of ginseng, we employed High-Throughput sequencing technologies using the Illumina HiSeqTM2500 system, and generated a large amount of sequenced transcriptome from ginseng roots. Approximately 77 million and 87 million high-quality reads were produced in the FCG and MCG roots transcriptome analyses, respectively, and we obtained 256,032 assembled unigenes with an average length of 1,171 bp by de novo assembly methods. Functional annotations of the unigenes were performed using sequence similarity comparisons against the following databases: the non-redundant nucleotide database, the InterPro domains database, the Gene Ontology Consortium database, and the Kyoto Encyclopedia of Genes and Genomes pathway database. A total of 4,207 unigenes were assigned to specific metabolic pathways, and all of the known enzymes involved in starch and sucrose metabolism pathways were also identified in the KEGG library. This study indicated that alpha-glucan phosphorylase 1, putative pectinesterase/pectinesterase inhibitor 17, beta-amylase, and alpha-glucan phosphorylase isozyme H might be important factors involved in starch and sucrose metabolism between FCG and MCG in different environments.

  • PDF

네트워크 약리학적 분석에 의한 소세포폐암에 대한 청대의 항암기전 연구 (Identifying the Anti-Cancer Effect of Indigo Naturalis in Small Cell Lung Cancer Based on Network Pharmacological Analysis)

  • 김영훈;정우진;정광희;김윤숙;안원근
    • 동의생리병리학회지
    • /
    • 제36권6호
    • /
    • pp.229-234
    • /
    • 2022
  • Lung cancer is the leading cause of cancer-related deaths worldwide. Indigo Naturalis (IN) is a dark blue powder obtained by processing leaves or stems of indigo plants, its anticancer effects have been reported in several studies. However, the pharmacological mechanism of IN in small cell lung cancer (SCLC) is not elucidated. In this study, to investigate the anticancer efficacy of IN for SCLC, we presented potential active ingredients, SCLC-related targets, and pharmacological mechanisms of IN that are expected to have anticancer activity for SCLC using a network pharmacological analysis. The phytochemical compounds of IN have been collected through TCMSP, SymMap, or HPLC documents. The active ingredients of IN such as indirubin, indican, isatin, and tryptanthrin were selected through ADME parameters or literature investigations for each compound. Using the Compounds, Disease-Target associations Databases, 124 common targets of IN and SCLC were obtained. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway enrichment analysis was carried out. GO biological processes are associated with response to xenobiotic stimulus, positive regulation of protein phosphorylation, regulation of mitotic cell cycle, and regulation of apoptotic signaling pathway. KEGG disease pathways included Gastric cancer, Bladder cancer, SCLC, and Melanoma. The main anticancer targets of the IN for SCLC were analyzed in 14 targets, including BCL2, MYC, and TP53. In conclusion, the results of this study based on the network pharmacology of IN can provide important data for the effective prevention and treatment of SCLC.

Blood transcriptome resources of chinstrap (Pygoscelis antarcticus) and gentoo (Pygoscelis papua) penguins from the South Shetland Islands, Antarctica

  • Kim, Bo-Mi;Jeong, Jihye;Jo, Euna;Ahn, Do-Hwan;Kim, Jeong-Hoon;Rhee, Jae-Sung;Park, Hyun
    • Genomics & Informatics
    • /
    • 제17권1호
    • /
    • pp.5.1-5.9
    • /
    • 2019
  • The chinstrap (Pygoscelis antarcticus) and gentoo (P. papua) penguins are distributed throughout Antarctica and the sub-Antarctic islands. In this study, high-quality de novo assemblies of blood transcriptomes from these penguins were generated using the Illumina MiSeq platform. A total of 22.2 and 21.8 raw reads were obtained from chinstrap and gentoo penguins, respectively. These reads were assembled using the Oases assembly platform and resulted in 26,036 and 21,854 contigs with N50 values of 929 and 933 base pairs, respectively. Functional gene annotations through pathway analyses of the Gene Ontology, EuKaryotic Orthologous Groups, and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were performed for each blood transcriptome, resulting in a similar compositional order between the two transcriptomes. Ortholog comparisons with previously published transcriptomes from the $Ad{\acute{e}}lie$ (P. adeliae) and emperor (Aptenodytes forsteri) penguins revealed that a high proportion of the four penguins' transcriptomes had significant sequence homology. Because blood and tissues of penguins have been used to monitor pollution in Antarctica, immune parameters in blood could be important indicators for understanding the health status of penguins and other Antarctic animals. In the blood transcriptomes, KEGG analyses detected many essential genes involved in the major innate immunity pathways, which are key metabolic pathways for maintaining homeostasis against exogenous infections or toxins. Blood transcriptome studies such as this may be useful for checking the immune and health status of penguins without sacrifice.

MicroRNA expression profiling during the suckling-to-weaning transition in pigs

  • Jang, Hyun Jun;Lee, Sang In
    • Journal of Animal Science and Technology
    • /
    • 제63권4호
    • /
    • pp.854-863
    • /
    • 2021
  • Weaning induces physiological changes in intestinal development that affect pigs' growth performance and susceptibility to disease. As a posttranscriptional regulator, microRNAs (miRNAs) regulate cellular homeostasis during intestinal development. We performed small RNA expression profiling in the small intestine of piglets before weaning (BW), 1 week after weaning (1W), and 2 weeks after weaning (2W) to identify weaning-associated differentially expressed miRNAs. We identified 38 differentially expressed miRNAs with varying expression levels among BW, 1W, and 2W. Then, we classified expression patterns of the identified miRNAs into four types. ssc-miR-196a and ssc-miR-451 represent pattern 1, which had an increased expression at 1W and a decreased expression at 2W. ssc-miR-499-5p represents pattern 2, which had an increased expression at 1W and a stable expression at 2W. ssc-miR-7135-3p and ssc-miR-144 represent pattern 3, which had a stable expression at 1W and a decreased expression at 2W. Eleven miRNAs (ssc-miR-542-3p, ssc-miR-214, ssc-miR-758, ssc-miR-4331, ssc-miR-105-1, ssc-miR-1285, ssc-miR-10a-5p, ssc-miR-4332, ssc-miR-503, ssc-miR-6782-3p, and ssc-miR-424-5p) represent pattern 4, which had a decreased expression at 1W and a stable expression at 2W. Moreover, we identified 133 candidate targets for miR-196a using a target prediction database. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that the target genes were associated with 19 biological processes, 4 cellular components, 8 molecular functions, and 7 KEGG pathways, including anterior/posterior pattern specification as well as the cancer, PI3K-Akt, MAPK, GnRH, and neurotrophin signaling pathways. These findings suggest that miRNAs regulate the development of the small intestine during the weaning process in piglets by anterior/posterior pattern specification as well as the cancer, PI3K-Akt, MAPK, GnRH, and neurotrophin signaling pathways.