• Title/Summary/Keyword: Kyongsang basin

Search Result 51, Processing Time 0.031 seconds

Palaeomagnetism of the Cretaceous Yuchon Group in Kosong Area, Southern Kyongsang Basin (경상분지 남단 고성지역의 백악기 유천층군에 대한 고자기 연구)

  • Kang, Hee-Cheol;Kim, In-Soo
    • Journal of the Korean earth science society
    • /
    • v.21 no.6
    • /
    • pp.663-674
    • /
    • 2000
  • A total of 165 independently oriented core samples were collected from 19 Cretaceous Yuchon Group sites in Kosong area, the southernmost part of the Miryang subbasin of the Kyongsang Basin in southern Korea. Stepwise AF and thermal cleaning revealed antipodal ChRM from 95 samples from 14 sites. Mean ChRM direction is d=26.0$^{\circ}$, i=49.4$^{\circ}$ (${\alpha}_{95}$=8.2$^{\circ}$, k=24.5, n= 14) before bedding correction and d=28.1$^{\circ}$, i=54.2$^{\circ}$ (${\alpha}_{95}$=4.8$^{\circ}$, k=70.6, n= 14) after bedding correction. A 2.88-fold increase of the precession parameter k by bedding correction indicates pre-folding age of the ChRM with 99% confidence level. Palaeomagnetic pole position calculated from the mean ChRM is 67.0$^{\circ}$N, 210.6$^{\circ}$E (dp=4.7$^{\circ}$, dm=6.7$^{\circ}$), which is significantly different neither from the poles of other part of the Kyongsang Basin nor those of Eurasia including SCB and NCB. This suggests stable relative position of the study area with regard to other parts of the Kyongsang Basin as well as to Eurasia continent since Cretaceous. Three ploarity reversals in the Kosong Formation in addition to the coexistence of normal and reversed polarities in the overlying Andesites and Welded Tuff suggest, in reference to the worldwide geomagnetic polarity time scale, an Albian to Maastrichtian (polarity chron 32r-31r) age of the Yuchon Group of the study area. An alleged hypothesis of stratigraphical correspondence between the Kosong Formation in the study area and the Tadaepo Formation in Pusan area is, however, not tenable: Not only because the latter shows a short reverse polarity only in its lowest part of the sequence but also because the Andesites overlying it is wholly normally magnetized, in contrast to the frequent reverals in the case of both the Kosong Formation and Andesites above it.

  • PDF

3-D Crustal Velocity Tomography in the Southern Part of The Korean Peninsula (한반도 남부지역의 3-D 속도 토모그래피)

  • Kim, So Gu;Li, Qinghe
    • Economic and Environmental Geology
    • /
    • v.31 no.2
    • /
    • pp.127-139
    • /
    • 1998
  • A new technique of simultaneous inversion for 3-D seismic velocity structure by using direct, reflected, and refracted waves is applied to the southeast part of the Korean Peninsula including Pohang Basin, Kyongsang Basin and Ryongnam Massif. Pg, Sg, PmP, SmS, Pn, and Sn arrival times of 44 events with 554 seismic rays are inverted for locations and crustal structure. $6{\times}6$ with $0.5^{\circ}$ and 8 layers (4 km each layer) model was inverted. 3-D seismic crustal velocity tomography including eight sections from surface to Moho, ten profiles along latitude and longitude are analyzed. The results are as follows: 1) the average velocity and thickness of sediment are 5.04 km/s and 3-4 km, and the velocity of basement is 6.11 km/s. The shape of velocity in shallower layer is agreement with Bouguer gravity anomaly (Cho et al., 1997). 2) the velocities fluctuate strongly in the upper crust. The velocity distribution of the lower crust under Conrad appears basically horizontal. 3) the average depth of Moho is 30.4 km, and velocity is 8.01 km/s. 4) from the velocity and depth of the sediment, the thickness, velocity and form of the upper crust, and the depth and form of Moho, we can find the obvious differences among Ryongnam Massif, Kyongsang Basin and Pohang Basin. 5) the deep faults (a Ulsan series faults) near Kyongju and Pohang areas can be found to be normal and/or thrust faults with detachment extended to the bottom of the upper crust.

  • PDF

3-D Crustal Velocity Tomography in the Central Korean Peninsula (한반도 중부지역의 3차원 속도 모델 토모그래피 연구)

  • Kim, So Gu;Li, Qinghe
    • Economic and Environmental Geology
    • /
    • v.31 no.3
    • /
    • pp.235-247
    • /
    • 1998
  • A new technique of simultaneons inversion for 3-D seismic velocity structure by using direct, reflected, and refracted waves is applied to the center of the Korean Peninsula including Pyongnam Basin, Kyonggi Massif, Okchon Fold Zone, Taebaeksan Fold Zone, Ryongnam Massif and Kyongsang Basin. Pg, Sg, PmP, SmS, Pn, and Sn arrival times of 32 events with 404 seismic rays are inverted for locations and crustal structure. 5 ($1^{\circ}$ along the latitude)${\times}6$ ($0.5^{\circ}$ along the longitude) ${\times}8$ block (4 km each layer) model was inverted. 3-D seismic crustal velocity tomography including eight sections from the surface to the Moho, eight profiles along latitude and longitude and the Moho depth distribution was determined. The results are as follows: (1) the average velocity and thickness of sediment are 5.15 km/sec and 3-4 km, and the velocity of basement is 6.12 km/sec. (2) the velocities fluctuate strongly in the upper crust, and the velocity distribution of the lower crust under Conrad appears basically horizontal. (3) the average depth of Moho is 29.8 km and velocity is 7.97 km/sec. (4) from the sedimentary depth and velocity, basement thickness and velocity, form of the upper crust, the Moho depth and form of the remarkable crustal velocity differences among Pyongnam Basin, Kyonggi Massif, Okchon Zone, Ryongnam Massif and Kyongsang Basin can be found. (5) The different crustal features of ocean and continent crust are obvious. (6) Some deep index of the Chugaryong Rift Zone can be located from the cross section profiles. (7) We note that there are big anisotropy bodies near north of Seoul and Hongsung in the upper crust, implying that they may be related to the Chugaryong Rift Zone and deep fault systems.

  • PDF

An Inquiry into the Formation and Deformation of the Cretaceous Gyeongsang (Kyongsang) Basin, Southeastern Korea (한반도 동남부 백악기 경상분지의 형성과 변형에 관한 질의)

  • Ryu In-Chang;Choi Seon-Gyu;Wee Soo-Meen
    • Economic and Environmental Geology
    • /
    • v.39 no.2 s.177
    • /
    • pp.129-149
    • /
    • 2006
  • Previously published stratigraphic, sedimentologic, paleontologic, paleomagnetic and geophysical data are reviewed to make an understanding on the tectonic evolution of the Cretaceous Gyeongsang (Kyongsang) basin, southeast Korea. A stratigraphic framework and a tectonic model on the formation and deformation of the Gyeongsang Basin are newly proposed on the basis of integration these data with magmatism and mineralization ages in the basin. A newly proposed stratigraphic framework indicates that strata in the basin can be subdivided into five distinct stratigraphic units that represent pre-rifting, syn-rifting, inversion I, II, and III stages. The Gyeongsang Basin was formed initially as a pre-rifting stage due to north-south extension in the Late Jurassic prior to a syn-riftins stage that resulted from east-west extension during the Early Cretaceous. In the Late Cretaceous, the basin was deformed by three-staged sequential deformation of north-south, northwest-southeast, and east-west compressions. The tectonic history of the basin has been largely controlled by the change of motion of the Izanagi Plate from north to northwest during the Cretaceous. In the early Cretaceous, the Izanagi Plate began to subduct northward beneath the Eurasian Plate and caused the left-lateral strike-slip fault systems in the southern part of the peninsula. The left-lateral wrenching of these fault systems was causally linked to development of pull-apart basins, such as the Gyeongsang Basin in the southeastern part of the peninsula. However, northwestward movement of the Izanagi Plate during the Late Cretaceous probably led to the extensive volcanism as well as sequential deformations in the basin. The stratigraphic and tectonic model, which is newly proposed as a result of this study, may be expected to enhancing the efficiency for exploration and exploitation of useful mineral resources in the basin as well as establishing geologic history in the Cretaceous Gyeongsang Basin. Together with the spatial and temporal correlation of the Cretaceous basins in adjacent areas, this stratigraphic and tectonic model provides a new geologic paradigm to delineate the sophisticated tectonic history of East Asia turing the Cretaceous.

Submarine Geology of Continental Margin of the East Sea, Korea (한국(韓國) 동해대륙단(東海大陸端) 해저지질(海底地質))

  • Kim, Chong Su
    • Economic and Environmental Geology
    • /
    • v.15 no.2
    • /
    • pp.65-88
    • /
    • 1982
  • In the last ten years, marine geological and geophysical survey and research were conducted by Japanese, Russian and American scientists in the East Sea of Korea (Japan Sea). Many research results were published. However, regional research of the geology of the continental margin of the Korean Peninsula was not conducted. This study has made on attempt to classify submarine strata and stratigraphic boundaries. The study has revealed characters of submarine geology and structure. Isopach maps of each identified stratigraphic unit have been constructed as the results of this study. The study was conducted on the basis of analyses of marine seismic surveys carried out in the continental margin of the East Sea between Kangneung and Pohang. Three depositional basins were identified in the study area and they were named as, Mukho Basin, Hupo Basin and Pohang Basin. The Mukho Basin is developed in continental slope and shelf in the area between Kangneung and Samcheog. Quaternary and Pliocene sediments attain a maximum thickness of 900 m. Basement rocks are interpreted as granite and gneiss. They are correlated with granite-gneiss of the Taebaecksan Series of Pre-cambrian age and the Daebo granite of Jurassic age. The Hupo Basin is developed in the continental shelf between Uljin and Youngdeok. Quaternary and Pliocene sediments attain a maximum thickness of 600 m. Basement rocks were interpreted as granite and gneiss and they are correlated with metamorphic rocks of Pre-cambrian age and the Daebo granites, comprising the Ryongnam Massif. The Pohang Basin is developed in the area between Pohang and Gangu. This basin contains Miocene and older sediments. Basement rocks are not shown. Many faults are developed within the continental shelf and slope. These faults strike parallel with the coast line. A north-south direction is predominant in the southern study area. However, in the northern study area the faults strike north, and north-west. The faults are parallel to each other and are step faults down-thrown to the east or west, forming horst and graben structures which develop into sedimentary basins. Such faults caused the development of submarine banks along the boundary between the continental shelf and slope. This bank has acted as a barrier for deposition in the Hupo Basin. Paleozoic sedimentary rocks distributed widely in the adjacent land area are absent in the Mukho Basin. This suggests that the area of the basin was situated above the sea level until the Pliocene time. The study area contains Pliocene sediments in general. These sediments overlie the basement complex composed of metamorphic rocks, granites, Cretaceous (Kyongsang System) sedimentary rocks and Miocene sedimentary rocks. These facts lead to a conclusion that the continental shelf and slope of the study area were developed as a result of displacements along faults oriented parallel to the present coast line in the post Miocene time.

  • PDF

Morphology and Ecological Milieu of Keum-gae River basin in Andong Province (안동 금계천 유역의 지형과 생태 환경)

  • KEE, Keun-Doh
    • Journal of The Geomorphological Association of Korea
    • /
    • v.17 no.4
    • /
    • pp.99-110
    • /
    • 2010
  • This study elucidates the interrelationship between climatic, morpological, and hydraulic milieu in the drainage basins of Keum-gae river from the viewpoint of ecogeography. The region of this basin is located at low-relief hills. Because hills are made up of granitic regolith by deep weathering, the rate of permeability is very high. And, the speed of drainage is very fast, and the deficit of water easily revealed and BOD is very high. Therefore a great deals of efforts are needed for the maintenance of stable milieu.

Epidemiological Note on the Clonorchiasis in Samrangjin Eup, Milyang Gun, Kyongsang Nam Do (=province) (경상남도(慶尙南道) 밀양군(密陽郡) 삼랑진읍(三浪津邑)에 있어서의 간흡충(肝吸虫) 감염실태조사(感染實態調査))

  • Rim, Han-Jong;Joo, Kyoung-Hwan;Eom, Kee-Seon;Park, Soo-Bae
    • Journal of agricultural medicine and community health
    • /
    • v.7 no.1
    • /
    • pp.80-89
    • /
    • 1982
  • In order to observe the endemic status of Clonrchis sinensis infection in Samrangjin eup, Milyang gun, Kyongsang nam do, a total number of 294 stool specimens were collected from the inhabitants who lived in the basin of the Nakdong river. The specimens were examined by cellophane thick smear technique and Stoll's egg dilution technique during the period from May to June 1983. The epidemiological status was analysed statistically by the regression equation and catalytic curv with the results obtained from this area. The results are as follows : 1) The infestation rate of Clonorchis sinensis in 294 was 49.0%. 2) No remarkable difference was observed between male (52.5%) and female (44.8%). 3) Average E.P.G. by Stoll's egg dilution technique in this area was 9,597. 4) The degree of the intensity of Clonorchis infection by E.P.G. count was distributed as 10.5% in very heavy infection, 14.7% in heavy infection, 47.4% in moderate infection, and 29.3% in light infection. 5) The intensity of endemicity in this area was represented with the regression equation calculated with the cumulative percentages of E.P.G. counts. Regression equation was y=3.40+1.23 log x and Cs. $D._{50}$ was 19.99. 6) The two stage catalytic model was applied and the calculation lead to the equation $y=1296(e^{-0.008t}-e^{-0.035t})$ ; a=0.035 > b=0.008 in this surveyed area. 7) Other helminthic infection rate in this area was 7.1% in A. lumbricoides, 9.5% in T. trichiura and 4.1% in E. vermicularis respectively.

  • PDF

Palaeomgnetic Study on the Cretaceous Rocks in the Konchonri Area of the Northern Milyang Subbasin, Korea (밀양소분지 건천리 일원의 백악기 암석에 대한 고자기 연구)

  • Kang, Hee-Cheol;Kim, In-Soo;Yun, Sung-Hyo
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.1
    • /
    • pp.1-12
    • /
    • 2000
  • A palaeomagnetic study was carried out on Early through Late Cretaceous sandstones and volcanic sequences (the Songnaedong Formation, Chaeyaksan Volcanics, Konchonri Formation, and Jusasan Andesite it ascending order) from Konchonri area in the northern Milyang subbasin of the Kyongsang Basin, Korea. A high-temperature stable remanence with direction of $d=22.9^{\circ},\;i=59.1^{\circ}\;({\alpha}_{95}=3.0^{\circ})$ has been isolated and a corresponding pole was $71.6^{\circ}N,\;199.6^{\circ}E\;(A_{95}=4.2^{\circ})$. The characteristic high-temperature component resides in both hematite and magnetite. The primary nature of this remanence is confirmed from positive fold and reversals tests, The palaeopole is consistent with those of the Hayang Group in other parts of the Kyongsang Basin. A comparison of the palaeomagnetic pole position from the studied area with the contemporary pole from China west of the Tan-Lu fault presents that Konchonri area has experienced little latitudinal displacement nor vertical-axis block rotation relative to the Chinese blocks since the Cretaceous. Based on the formations indicating dual polarity, radiometric and paleontologic data, the magnetostratigraphic age of the studied sequence from the Songnedong Formation to the Jusasan Andesite ranges from upper Albian to lower Campanian reverse polarity chronozone. On the other hand, volcanic samples of the Chaeyaksan Volcanics and the Jusasan Andesite showed the scattered directions considered in group, even though individual sample showed a stable remanent magnetization in response to thermal demagnetization. It indicates that they have been reworked after acquisition of the stable remanent magnetization.

  • PDF

Determination of Lateral Variations for Pn Velocity Structure Beneath the Korean Peninsula Using Seismic Tomography (지진토모그래피 (Seismic Tomography) 방법을 이용한 한반도 하부 Pn 속도 구조의 수평분포 결정)

  • Kim, So Gu;Lee, Seoung Kyu
    • Economic and Environmental Geology
    • /
    • v.30 no.6
    • /
    • pp.625-635
    • /
    • 1997
  • A back projection algorithm is applied to 216 Pn travel time measurements to image lateral variations of compressional velocity in the uppermost mantle in the Korean Peninsula. We obtained an average P-velocity value for the uppermost mantle of $7.90{\pm}0.18km/sec$, and an average mantle P-velocity gradient of $5.3{\times}10^{-3}s^{-1}$ for the Korean Peninsula. The final 3-D velocity image in the uppermost mantle is characterized by a low-velocity (about $7.77{\pm}0.12km/sec$) region in the southeast area of the Korean peninsula, which is called 'Kyongsang Basin' and by high-velocity(${\geq}8.08km/sec$) region in the northern area of the Korean Peninsula(Hamkyong and Pyongan provinces). The crustal thicknesses are calculated for the 10 subregions. The crustal thickness of the northern part(${\geq}39^{\circ}N$) of the Korean Peninsula is 33.0-36.0 km, on the contrary, that of the southern part(< $39^{\circ}N$) is 30.7~33.7 km. The velocity image obtained in this study is somewhat consistent with previous S-P travel time studies and gravity studies.

  • PDF

A Study on Serpentinization of Serpentinites from the Ulsan Iron Mine (울산철광산 지역의 사문암의 사문석화 작용에 관한 연구)

  • Kim, Kyo Han;Park, Jae Kyong;Yang, Jong Mann;Satake, Hiroshi
    • Economic and Environmental Geology
    • /
    • v.26 no.3
    • /
    • pp.267-278
    • /
    • 1993
  • Serpentinite rocks which are composed mainly of olivine, serpentine and clinopyroxene, cropped out in the anorogenic Kyongsang sedimentary basin of South Korea. The serpentinites contain high content of MgO (36.87~41.99%) and 47~67 ppm Co, 1185~2042 ppm Ni and 979~3582 ppm Cr, which are quite similar to those of ultrabasic rocks such as peridotite and dunite. Isotopic compositions of serpentinites range from -95.5 to -105.7‰ in ${\delta}D$ and +1.7 to 7.1‰ in ${\delta}^{18}O$ corresponding to the continental antigorite type. A wide variation of oxygen isotopic values and $H_2O^+$ content of serpentinites reflect the different water/rock ratios during serpentinization processes. Formation temperature of serpentine minerals are estimated to be unusually high temperature of $488{\sim}646^{\circ}C$ by serpentine-magnetite isotopic fractionation, which belong to continental antigorite type. Calculated ${\delta}^{18}O$ value of serpentinized fluid during serpentinization is suggested that the hydrothermal fluid responsible for serpentinization be originated from the magmatic fluid with a minor influx of paleo-meteoric water in this area.

  • PDF