• 제목/요약/키워드: Kuroshio

검색결과 194건 처리시간 0.025초

중등학교 과학교과서의 황해 및 동중국해 해류도 분석 (An Analysis of Oceanic Current Maps of the Yellow Sea and the East China Sea in Secondary School Science Textbooks)

  • 박경애;박지은;최병주;이상호;이은일;변도성;김영택
    • 한국지구과학회지
    • /
    • 제35권6호
    • /
    • pp.439-466
    • /
    • 2014
  • 다양한 중등학교 과학교과서 동해 해류도의 통일이 최근에 완성됨에 따라 황해와 동중국해의 해류도 제작에 대한 요구가 증대되고 있다. 이 연구는 그 첫 단계로서 과학 논문과 2014년 현행 교과서의 해류도들을 분석하여 향후 황해와 동중국해의 통일된 해류도를 제작하는 과정을 촉진시키고자 하였다. 우선 교과서와 과학 논문의 아날로그 해류도들을 수치화하여 해류도의 특성을 정량적으로 조사하였고 해류도들을 상호 비교하였다. 쿠로시오해류, 대만난류, 대마난류, 황해난류, 중국연안류, 한국연안류, 양쯔강 유출류와 같이 황해와 동중국해의 해류들을 선정하고 정의하였다. 이 해류들의 경로를 조사하기 위하여 18개의 세부 항목을 만들고 이를 분석에 활용하였다. 각 세부항목에 대하여 교과서와 과학 논문 해류도들을 분석한 결과, 교과서 해류도들은 과학 논문으로부터 획득한 해류에 관한 최근의 지식과 상당한 차이를 나타내었다. 또한 황해와 동중국해 해류는 계절에 따라 크게 변화하므로 해류 전문가들의 활발한 토의를 통하여 교과서 해류도를 적어도 여름철과 겨울철로 구분하여 제시해야 할 것이다.

한국해역의 식물플랭크톤의 연구. IV. 동해, 남해 및 서해해역의 식물플랭크톤 (Phytoplankton Studies in Korean Waters. IV. Phytoplankton in the Adjacent Seas of Korea)

  • 최상
    • 한국해양학회지
    • /
    • 제4권2호
    • /
    • pp.49-67
    • /
    • 1969
  • A quantitative phytoplankton study in Korean waters was commenced in 1964 as a part of the primary production studies of Koreans seas, and it was continued with the cruises for Cooperative Studies of the Kuroshio(C.S.K) in 1965-1968. Phytoplankton samples were taken by dipping about 500ml of sea water from the surface, and then fixed by ading neutralized formlin. This report deals with the results obtained during 1965-1966. I examined a total of 298 samples of surface phytoplankton collected in the wate neighboring Korea in the above-mentioned period, and detected 147 species of diatoms and 22 species of dinoflagellates. Among them 123 species of diatoms and 18 species of dinoflagellates occured in the Japan Sea region, 133 species of diatoms and 11 species of dinoflagellates occured in the Korea Strait region, and 49 species of diatom and 8 species of dinoflagellates occured in the Yellow Sea region. And thd phytoplankton standing crops are dept in a fair abundance in the Japan Sea area all the year round, and are poor in the Yellow Sea area. The seas surrounding Korea are divided into seven regions by the planktological characteristics; northern and southern parts of the Japan Sea, eastern, western and southern parts of the Korea Strait, southern and northern parts of the Yellow Sea. The representative of the phytoplankton community in each sea region is generalized as follows; northern part of the Japan Sea is dominant with Chaetoceros group, southern part of the Japan Sea is dominant with Chaetoceros group and Skeletonema costaum, eastern part of the Korea Strait is dominant with Chaetoceros group and Pleurosigma sp., southern part of the Korea Strait is dominant with Chaetoceros group and Rizosolenia group, western part of the Korea Strait is most poor in phytoplankton, southern part of the Yellow Sea is dominant with Pleurosigma sp. and Coscinodiscus group, and northern part of the Yellow Sea is dominant with Pleurosigma sp. and Eucampia zoodiacus. Chaetoceros curvisetus, Leptocylindrus danicus, Pleurosigma normanii, Thalassionema nitzschioides, Thalassiothrix flauenfeldii appeared all the year round in the neighboring sea of Korea. There were 24 species (18 species of diatoms and 6 species of dinoflagellates) of the pecuriar phytoplankton in the Japan Sea, 27 species (25 species of diatoms and 2 species of dinoflagellates) of that in the Korea, and 7 species (5 species of diatoms and 2 species of dinoflagellates) of that in the Yellow Sea, respectively.

  • PDF

해양수색 위성자료의 검.보정 (Calibration and Validation of Ocean Color Satellite Imagery)

  • 서영상;;장이현;이삼근;유신재
    • 한국환경과학회지
    • /
    • 제10권6호
    • /
    • pp.431-436
    • /
    • 2001
  • Variations in phytoplankton concentrations result from changes of the ocean color caused by phytoplankton pigments. Thus, ocean spectral reflectance for low chlorophyll waters are blue and high chlorophyll waters tend to have green reflectance. In the Korea region, clear waters and the open sea in the Kuroshio regions of the East China Sea have low chlorophyll. As one moves even closer In the northwestern part of the East China Sea, the situation becomes much more optically complicated, with contributions not only from higher concentration of phytoplankton, but also from sediments and dissolved materials from terrestrial and sea bottom sources. The color often approaches yellow-brown in the turbidity waters (Case Ⅱ waters). To verify satellite ocean color retrievals, or to develop new algorithms for complex case Ⅱ regions requires ship-based studies. In this study, we compared the chlorophyll retrievals from NASA's SeaWiFS sensor with chlorophyll values determined with standard fluorometric methods during two cruises on Korean NFRDI ships. For the SeaWiFS data, we used the standard NASA SeaWiFS algorithm to estimate the chlorophyll_a distribution around the Korean waters using Orbview/ SeaWiFS satellite data acquired by our HPRT station at NFRDl. We studied In find out the relationship between the measured chlorophyll_a from the ship and the estimated chlorophyll_a from the SeaWiFs satellite data around the northern part of the East China Sea, in February, and May, 2000. The relationship between the measured chlorophyll_a and the SeaWiFS chlorophyll_a shows following the equations (1) In the northern part of the East China Sea. Chlorophyll_a =0.121Ln(X) + 0.504, R²= 0.73 (1) We also determined total suspended sediment mass (55) and compared it with SeaWiFS spectral band ratio. A suspended solid algorithm was composed of in-.situ data and the ratio (L/sub WN/(490 ㎚)L/sub WN/(555 ㎚) of the SeaWiFS wavelength bands. The relationship between the measured suspended solid and the SeaWiFS band ratio shows following the equation (2) in the northern part of the East China Sea. SS = -0.703 Ln(X) + 2.237, R²= 0.62 (2) In the near future, NFRDI will develop algorithms for quantifying the ocean color properties around the Korean waters, with the data from regular ocean observations using its own research vessels and from three satellites, KOMPSAT/OSMl, Terra/MODIS and Orbview/SeaWiFS.

  • PDF

한국의 빨간 오징어 유자망 어업과 북서태평양의 해황 변동 (Korean Drift Gillnet Fishery For Flying Squid , Ommastrephes bartrami ( Lesueur ) , and the Variation of Oceanographic Conditions in the North Western Pacific Ocean)

  • 임기봉
    • 수산해양기술연구
    • /
    • 제22권3호
    • /
    • pp.8-16
    • /
    • 1986
  • The fishing conditions of flying squid, ommastrePhes barsram(Lesueur), in the North Pacific Ocean was studied based on the horizontal water temperature data, satellite data from NOAA and statistical data of flying squid fisheries which were collected from 1980 to 1984. The obtained results were as follows; 1. Since 1979, the Korean drift giIlnet fishery for flying squid was launched in North Pacific. Number of operating vessel and catch of flying squid increased gradually every year. The number of vessels were 111 and their annual catches were 42, 977 M/T in 1984. Therefore, Korean drift giIlnet fishery for this species has played an important role in the products of Korean high-sea fisheries. 2. In the beginning of the fisheries, fishing grounds was formed in the west of long. 1800E. In 1982, in consequence of the center which extended eastward, the fishing ground was formed long. 166$^{\circ}$W in the central North Pacific Ocean. Since 1983, the fishing grounds were formed as far as long. 161$^{\circ}$W. The range of general fishing season in the central North Pacific was from June to August. After september, fishing ground was shifted to the west, in the Northwestern Pacific. 3. The Predominant fishing season for the flying squid was August through January of the coming year. Optimum water temperature for flying sguid at surface layer in the Pacific Ocean ranged from 11 $^{\circ}$e to 17$^{\circ}$e in winter, 13$^{\circ}$e to 17$^{\circ}$e in spring, 12. 8$^{\circ}$C to 19.7$^{\circ}$e in summer and 1O.6$^{\circ}$e -18.7$^{\circ}$e in fall. 4. In summer, the Oceanographic condition in the North Pacific Ocean showed that the water temperature at surface layer was lower in 1980, 1983 and higher in 1981, 1982 and 1984 as compared with mean annual water temperature. 5. The characteristics df oceanographic conditions in the fluation, disformation, mixing and other factors of the Kuroshio and Oyashio currents, which have considerably influenced upon the water masses of the areas. 6. The data and information on surface thermal Structure interpreted from Infrared Satellite Imaginary from NOAA-7 and NOAA-8 are very available in estimating water temperature on the areas and investigating the major fishing grounds. 7. According to the fisheries statics of Japanese drift gilInet, the annual catches of flying squid considerably decreased from 225, 942 M/T in 1983 to 133, 217 M/T in 1984. 8. The fishing grounds in the central North Pacific in several fishing seasons were formed as follows: In June, the initial fishing season, the fishing grounds were formed in the vicinity of lat. 35 - 40oN, the central North Pacific east of 179$^{\circ}$E. In July, the fishing ground were formed in the wide arEa of the central North Pacific north of 400N and long. 174$^{\circ}$E-145$^{\circ}$W In Auguest, concentrative fishing operation carried out in :he central North Pacific north of 43$^{\circ}$N and East of 165$^{\circ}$W. On the other hand, in September, main fishing grounds were disappeared and moved to the west.

  • PDF

훗카이도 남부 Warm Core Ring의 탄성파 반사법 영상화 (Seismic reflection imaging of a Warm Core Ring south of Hokkaido)

  • 야먀스타 미키야;요코다 카나코;푸카시오 요시오;고다이라 슈이치;미우라 세이치;가츠마타 카츠로
    • 지구물리와물리탐사
    • /
    • 제14권1호
    • /
    • pp.18-24
    • /
    • 2011
  • 훗카이도 남쪽 태평양 판의 심부 지각 구조를 규명하기 위해 다중채널 탄성파 반사법 탐사가 2009 년에 수행되었다. 탐사 측선은 250km 넓이의 WCR을 가로지르며, 쿠로시오 속류에 의해 생성된 난류가 흐르는 지역에 위치한다. 본 논문에서는 다중채널 탄성파 반사법 자료를 사용하여 WCR의 세부 구조를 규명하고자 하였다. 탐사 측선은 2개의 프로파일로 구성되는데, 그 중 하나는 송신원 간격이 200 미터이고, 다른 하나는 50 미터 간격이다. 밀집된 송신원을 갖는 측선의 기록자료가 성긴 송신원 측선의 기록자료보다 배정 잡음이 훨씬 많은 것을 관찰할 수 있다. 이 잡음의 발생원은 이전 송신원으로부터 발생한 해수면과 해저면, 그리고 지하 불연속면 사이의 음향 다중반향음으로 확인되었다. 음파 속도 정보가 동시에 수행하는 온도 측정으로부터 구해질 수 있다면 중합전 구조보정 기술을 통해 배정잡음에 묻혀 있는 신호를 효과적으로 강조할 수 있음을 알 수 있었다. WCR은 음향학적으로 볼 때 해양쪽으로 급경사(${\sim}2^{\circ}$)이고 해변쪽으로 완경사(${\sim}1^{\circ}$)인 오목한 반사면들의 집합체라고 할 수 있다. WCR 내부에서 30km 넓이의 반사면들로 둘러싸인렌즈 형태의 구조를 확인할 수 있었다.

동중국해 북부해역에서 봄과 여름동안 영양염과 엽록소의 분포특성 (The Distribution of Nutrients and Chlorophyll in the Northern East China Sea during the Spring and Summer)

  • 김동선;심정희;이정아;강영철
    • Ocean and Polar Research
    • /
    • 제27권3호
    • /
    • pp.251-263
    • /
    • 2005
  • In order to study changes in the marine ecosystem of the East China Sea derived by the global warming and construction of the Three Gorges Dam in the middle of the Changjiang, temperature, salinity, nutrients, and chlorophyll-a were studied intensively in the northern part of the East China Sea during the summer of 2003 and spring of 2004. According to the previous studies, the upwelling of the Kuroshio Current and the Changjiang resulted in a major inputs of nutrients in the East China Sea, but these two inputs may not contribute gently to a build up of nutrients in the northern East China Sea. In spring, relatively high concentrations of nitrates and phosphates were observed in the western part of the study area, which resulted from the supply of high concentrations of nutrients showing up in the surface waters as a result of vertical mixing from the ocean bottom. The concentrations of nitrates and phosphates observed in summer were lower than those in spring, since the surface waters were well stratified by the larger discharge of fresh water from the Changjiang in summer. The surface nitrate/phosphate ratios ranged from 1.3 to 16 in spring and from 1.1 to 15 in summer and were lower than the Redfield ratio of 16, indicating that the growth of phytoplankton is limited by nitrogen. This results are contrary to the previous results, in which the growth of phytoplankton was limited by phosphate in the East China Sea. The reason for this contrary result is that most nutrients in the surface waters are supplied by vertical mixing from the bottom waters with low nitrate/phosphate ratios, not directly influenced by the Changjiang with high nitrate/phosphate ratios. The depth-integrated chlorophyll observed in summer was similar to the previous results, but those measured in spring were almost twice as high as those found in previous results. The depth-integrated chlorophyll in spring was higher than that of summer, which results from high concentrations of nitrates and phosphates in the surface waters in spring due to active vertical mixing.

라듐 동위원소와 염분을 이용한 동중국해, 남해 및 대한해협 해수의 기원가 혼합비율 추정 (Origin and Mixing Ratio of Water Masses in the East China Sea, the South Sea and the Korea Strait using Radium Isotopes and Salinity)

  • 김기현;한정희
    • 한국해양학회지:바다
    • /
    • 제5권3호
    • /
    • pp.216-223
    • /
    • 2000
  • 동중국해, 남해와 대한해협에서 채취한 해수 시료의 $^{228}$Ra/$^{226}$Ra방사능비와 염분을 이용하여 , 장강수(CW), 황해수(YSW) 그리고 쿠로시오수(KW)간의 혼합비율을 추정하였다. 동중국해의 경우 97년 8월 채집시료의 $^{228}$Ra/$^{226}$Ra방사능비와 염분을 이용한 혼합도는 이 지역이 KW, YSW그리고 CW순으로 세 단성분 모두의 영향을 받고 있다는 것을 나타낸다. 또한 동중국해의 경우 CW의 혼합비율은 염분만으로도 추정이 가능하였다. 남해와 대한해협의 경우혼합비율 추적자로 $^{228}$Ra/$^{226}$Ra방사능비와 염분을 이용하고 세 개의 단성분을 이용한 혼합비율추정에서 대부분의 정점은 CW의 영향이 매우 적은 것으로 나타났다. 또한 이 값들은 혼합비율 추적자로 $^{228}$Ra/$^{226}$Ra방사능비를 이용하고, CW를 제외한 두 개의 단성분만을 이용하여 추정된 혼합비율과 큰 차이를 보이지 않았다. 그러나 CW의 영향을 받을 것으로 생각되는 우기나 단성분간 정확한 혼합비율 추정이 요구될 경우 혼합비율 추정에는 세 단성분을 이용하여, $^{228}$Ra/$^{226}$Ra방사능비와 염분이 동시에 고려되어야 한다.

  • PDF

8월의 한국동안에서의 수온분포에 관한 역학적 고찰 (A Dinamic Consideration on the Temperature Distribution in the East Coast of Korea in August)

  • 승영호
    • 한국해양학회지
    • /
    • 제9권1_2호
    • /
    • pp.52-58
    • /
    • 1974
  • 한국동안의 해수의 물리의 특성 및 해수의 운동에 관하여는 오래 전부터 많은 연구가 행하여졌다. Nishida(1927)에 의하면, 대한해협을 통과한 Tsushima난류는 다시 세 지류로 나뉘어 지며 첫째가 한국동안을 따라 북상하는 북상류, 둘째로 울릉도를 지나는 북동류, 셋째는 일본 북안을 끼고 흐르는 Tsushima본류라 하였다. 또한 그 (1926)의 관측에 의하면 대한해협의 서측북안 즉 한국 남동안 근처에서 수년 주기로 냉수의 표면노출 현상이 나타나고 있으며, 남서향하는 저층냉수의 속도는 0.1-0.35 knot에 이르고 있다. 임과 장(1969)은 대한해협 서측의 남서향 하는 저층수를 냉수괴라 하여 3-1$0^{\circ}C$로 규정하고 있으며, 이러한 저층냉수는 동해에서 생성된 수괴로 여름철에 해저를 따라 남서 방향으로 흘러 나가기 시작한다 하였다. 임(1973)은 대한해협의 저층냉수에 대한 연구에서, 6월에 대한해협을 통과하는 저층냉수 양을 17,135㎥/sec로 추산하였다. 수괴에 대하여는 임(1971)이 대한해협을 통과하는 Tsushima난류의 수괴에 대하여, Abe와 Myazaki(1960), 그리고 Uda에 의하여 동해의 수괴가 연구되었다. 임은 Tsushima난수를 Kuroshio의 표면수와 동지나 연안수의 혼합체라 하였다. Abe와 Myazaki, 그리고 Uda에 의하면, 동해에는 동해중간수(Mid- Water)와 그 밑으로 동해고유수(Japan Sea Proper Water)가 존재하며, 북한한류(North Korea Cold Current)와 Tsushima난류의 극전선 형성으로, 한류를 형성하고 있는 냉수괴가 침강하여 이것이 Tsushima난수의 밑에 존재하게 된다 하였다.

  • PDF

남해동부해역의 표층 수괴 변화에 따른 환경요인과 식물플랑크톤 군집의 계절적 변화 (Seasonal Variation of Phytoplankton Assemblages Related to Surface Water Mass in the Eastern Part of the South Sea in Korea)

  • 장풍국;현봉길;차형곤;정한식;장민철;신경순
    • Ocean and Polar Research
    • /
    • 제35권2호
    • /
    • pp.157-170
    • /
    • 2013
  • We investigated the seasonal succession of phytoplankton assemblages in the eastern part of the South Sea of Korea in relation to surface water masses. The study areas are under the direct influence of the Tsushima Warm Current (TCW) throughout the whole year, with its strength known to be seasonally variable. The region is also influenced by coastal waters (CW) driven from the South Sea of Korea and East China Sea, particularly in summer, as indicated by low salinity in the surface water. Nutrient property of the TCW can reveals whether the origin of the TCW is the nutrient-rich Kuroshio Current or the oligotropic Taiwan Warm Current. Surface chlorophyll-a (Chl-a) concentrations displayed a large seasonal variation for all stations, with high values found in spring and autumn and low values in summer and winter. At station M (offshore) and P (intermediate location between M and R), Chl-a concentrations in October were higher than those in March, when spring bloom normally occurs. This may be related to deeper mixed layer depths in October. Diatoms dominated under conditions of high nutrient supply in which Chaetoceros spp. and Skeletonema costatum-like spp. were abundant. S. costatum-like spp. dominated at stations R (onshore station) and P in December when there was greater nutrient supply, especially of phosphate. Flagellates and dinoflagellates dominated at all three stations after diatoms blooms. Dominant species were Scrippsiella trochoid in April and Ceratium furca in October at station R, and Gyrodinium spp. and Gymnodinium spp. at station M during summer, when the effect of the oligotropic Taiwan Warm Current and the oligotropic coastal water from East China Sea were strong. Redundancy analysis showed clear seasonal successions in the phytoplankton community and environmental conditions, in which both principal components 1 and 2 accounted for 69.6% of total variance. Our results suggested that environmental conditions seemed to be determined by the origin of the TCW and the relative seasonal strength of the water masses of the TCW and CW, which may affect phytoplankton growth and compositions in the study area.

연안어장의 부유성 폐기물 분포와 조성에 관한 연구 II. 남해 중부해역의 폐기물 수송 (A Study on the Distribution and Composition of Floating Debris in the Coast of Korea II. Transport of Debris in Middle Part of Southern Sea)

  • 김종화
    • 한국수산과학회지
    • /
    • 제32권3호
    • /
    • pp.338-344
    • /
    • 1999
  • Floating debris was recorded from a training ship, $\sharp$1 Kwanaksan, of Pukyong National University with about 10 knots speed at July 15th and 20th of 1997. The sampled area is the middle of southern sea of Korea, divided into 44 unit segments on survey routes. Debris fabrication materials were categorized with 6 items using the following; man-made or natural wood items, paper and cardboard, nylon netting and rope, styrofoam, plastics, floating metal and glass containers. All identified items within a 100 $\pm$ 2 m wide band were recorded but ignored if beyond this boundary. The results of distribution and transport of floating debris in the area are as follows: 1. The quantities of debris during the survey were distributed from $1.6\~369.7\;items/km^2$. The most obvious trend is the widespread distribution of all debris. The highest densities of all debris were discovered in the coastal waters of Namhae and Yokji island, and of about 50 km off from the southward of Yokji and about 74 km off from the eastward of Komun island. Especially many of small styrofoams within $\phi$20 cm were observed in these segments. 2. Styrofoams and plastics were composed of $83.5\%$ among all debris, next woods items, $9.8\%$. 3. The quantities, distribution shapes and composition of debris were varied as the observed duration and the natures of each items. 4. These phenomena are concluded that firstly they depend on the river discharges included debris due to precipitation falls, secondly inflow or dumping debris are drifting to the off-shore by Kuroshio currents present at their adjacent sea, But on the basis of the observed data it is difficult that source position, quantities and inflow items of debris are identified, and also the transport processes is pursue. further more surveys are continuously being investigated, and from this it is hoped that a much wider coverage can be achieved, perhaps on all sites of the Coast of Korea and contributed to the stationary area, finding of sources, removal method of debris and resistants of marine productivity.

  • PDF