• Title/Summary/Keyword: Korean surface temperature

Search Result 12,774, Processing Time 0.046 seconds

Development and Evaluation of Statistical Prediction Model of Monthly-Mean Winter Surface Air Temperature in Korea (한반도 겨울철 기온의 월별 통계 예측 모형 구축 및 검증)

  • Han, Bo-Reum;Lim, Yuna;Kim, Hye-Jin;Son, Seok-Woo
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.153-162
    • /
    • 2018
  • The statistical prediction model for wintertime surface air temperature, that is based on snow cover extent and Arctic sea ice concentration, is updated by considering $El-Ni{\tilde{n}}o$ Southern Oscillation (ENSO) and Quasi-Biennial Oscillation (QBO). These additional factors, representing leading modes of interannual variability in the troposphere and stratosphere, enhance the seasonal prediction over the Northern Hemispheric surface air temperature, even though their impacts are dependent on the predicted month and region. In particular, the prediction of Korean surface air temperature in midwinter is substantially improved. In December, ENSO improved about 10% of prediction skill compared without it. In January, ENSO and QBO jointly helped to enhance prediction skill up to 36%. These results suggest that wintertime surface air temperature in Korea can be better predicted by considering not only high-latitude surface conditions (i.e., Eurasian snow cover extent and Arctic sea ice concentration) but also equatorial sea surface temperature and stratospheric circulation.

Analysis of Relationship between Vegetation Cover Rates and Surface Temperature Using Landsat TM Data (Landsat TM 데이터에 의한 식생피복율과 지표면온도와의 관계 해석)

  • Park, Jong-Hwa;Na, Sang-Il;Kim, Jin-Su
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.569-573
    • /
    • 2005
  • Land surface temperature(LST) is one of the key parameters in physics and meteorology of land-surface processes on regional and global scales. Urban Heat Island(UHI), a meteorological phenomenon by which the air temperature in an urban area increases beyond that in the suburbs, grows with the progress of urbanization. Satellite remote sensing has been expected to be effective for obtaining thermal information of the earth's surface with a high resolution. The main purpose of this study is to produce LST map of Cheongju and to analyze the spatial distributions of surface heat fluxes in urban areas. This study, taking Cheongju as the study area, aims to examine relationship between vegetation cover rates and surface temperature, and to clarify a method for calculation surface temperature with Landsat TM thermal images.

  • PDF

Estimation Model of the Change in Dairy Leaf Surface Temperature Using Scaling Technique

  • Eom, Ki-Cheol;Eom, Ho-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.5
    • /
    • pp.359-364
    • /
    • 2013
  • This study was conducted to develop a model to estimate crop leaf surface temperature. The results were as following; A definition for the daily time based on elapsed time from the midnight (00:00) as "E&E time" with the unit of Kmin. was suggested. The model to estimate the scaled temperature ($T^*e$) of crop leaf surface temperature by scale factor ($T^*$) according to the "E&E time : Kmin."(X) was developed as eq. (1) $T^*e=0.5{\cdot}sin(X+780)+0.5$ (2) $T^*=(Tx-Tn)/(Tm-Tn)$, Tx : Daily leaf temperature, Tm : Daily maximum leaf temperature, Tn : Daily minimum leaf temperature. Relative sensitivity of the measured temperature compared to the estimated temperature of red pepper, soybean and persimmon was 1.078, 1.033 and 0.973, respectively.

Evaluation of Water Retentive Pavement as Mitigation Strategy for Urban Heat Island Using Computational Fluid Dynamics

  • Cortes, Aiza;Shimadera, Hikari;Matsuo, Tomohito;Kondo, Akira
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.4
    • /
    • pp.179-189
    • /
    • 2016
  • Here we evaluated the effect of using water retentive pavement or WRP made from fly ash as material for main street in a real city block. We coupled computational fluid dynamics and pavement transport (CFD-PT) model to examine energy balance in the building canopies and ground surface. Two cases of 24 h unsteady analysis were simulated: case 1 where asphalt was used as the pavement material of all ground surfaces and case 2 where WRP was used as main street material. We aim to (1) predict diurnal variation in air temperature, wind speed, ground surface temperature and water content; and (2) compare ground surface energy fluxes. Using the coupled CFD-PT model it was proven that WRP as pavement material for main street can cause a decrease in ground surface temperature. The most significant decrease occurred at 1200 JST when solar radiation was most intense, surface temperature decreased by $13.8^{\circ}C$. This surface temperature decrease also led to cooling of air temperature at 1.5 m above street surface. During this time, air temperature in case 2 decreased by $0.28^{\circ}C$. As the radiation weakens from 1600 JST to 2000 JST, evaporative cooling had also been minimal. Shadow effect, higher albedo and lower thermal conductivity of WRP also contributed to surface temperature decrease. The cooling of ground surface eventually led to air temperature decrease. The degree of air temperature decrease was proportional to the surface temperature decrease. In terms of energy balance, WRP caused a maximum increase in latent heat flux by up to $255W/m^2$ and a decrease in sensible heat flux by up to $465W/m^2$.

A Study on the Relationship Between Photovoltaic Module Surface Temperature and Photovoltaic Power Using Real Experiment (실물 실험을 통한 태양광 모듈의 표면온도와 태양광 발전량과의 관계에 대한 연구)

  • Cho, Sung-Woo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.3
    • /
    • pp.8-14
    • /
    • 2018
  • PV module power is calculated on PV module surface temperature adjustment by irradiation on the summer and autumn in NOCT(Nominal Operating Cell Temperature) conditions. The summer and autumn periods were selected because of large variation in outdoor air temperature and irradiation. This study was performed to understand relationship between PV module surface temperature and photovoltaic power using field measurement. As a results, it was determined that the amount of irradiation was proportional to the amount of photovoltaic power in the field measurement. However, it was also identified that the PV power generation decreased by increased PV module surface temperatures due to irradiation.

Effects of Stainless Steel Plate-Patterns on the Thermal Distortion and Surface Temperature of Aluminum Frypan (알루미늄 프라이팬에 부착된 스텐리스판의 패턴이 열 변형 및 표면온도에 미치는 영향)

  • Moon, Sungmo;Yoon, Myungsik
    • Journal of Surface Science and Engineering
    • /
    • v.53 no.5
    • /
    • pp.227-231
    • /
    • 2020
  • This article investigated the effects of stainless steel plate-patterns bonded to aluminum frypan on the thermal distortion and surface temperature of the frypan during gas or induction heating. Two different stainless steel plate-patterns were employed: type A contains only circular holes and type B has not only circular holes but also vacant spaces of 0.5 mm thick and 40 mm long straight line crossing 60 mm long curved line. The bottom of the frypan was distorted during heating when type A stainless steel plate-bonded frypan while no significant thermal distortion was observed for type B stainless steel plate-bonded frypan during heating. Temperature of the frypan surface showed the same trend during gas heating, irrespective of stainless steel plate-patterns. During induction heating, however, the frypan with type B stainless steel plate-pattern showed lower surface temperature than the frypan with type A stainless steel plate-pattern. It is concluded that Type B stainless steel plate-pattern with circular holes and vacant spaces of lines is very effective for minimizing a thermal distortion and lowering the surface temperature of an aluminum frypan during induction heating.

Surface Modification by Heat-treatment of Propellant Waste Impregnated ACF

  • Yoon, Keun-Sig;Pyo, Dae-Ung;Lee, Young-Seak;Ryu, Seung-Kon;Yang, Xiao Ping
    • Carbon letters
    • /
    • v.11 no.2
    • /
    • pp.131-136
    • /
    • 2010
  • Propellant waste was impregnated on the surface of activated carbon fiber and heat-treated at different temperature to introduce newly developed functional groups on the ACF surface. Functional groups of nitrogen and oxygen such as pyridine, pyridone, pyrrol, lacton and carboxyl were newly introduced on the surface of modified activated carbon fiber. The porosity, specific surface area, and morphology of those modified ACFs were changed as increasing the heat-treated temperature from 200 to $500^{\circ}C$. The optimum heat-treatment temperature was suggested to $500^{\circ}C$, because lower temperature given rise to the decrease of specific surface area and higher temperature resulted in the decrease of weight loss. Propellant waste can be used as an useful surface modifier to porous carbons.

A Quantitative Study on the Effect of Temperature Control by a Shade Tree and the Lawn Area (식물의 온도 완화효과에 관한 기초적 연구)

  • 안계복;김기선
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.14 no.1
    • /
    • pp.1-13
    • /
    • 1986
  • The purpose of this study is to investigate the effect of temperature control by a shade tree and the lawn area. In this investigation, we find out that artificial-lawn, concerte, and exposed soil are more higher temperature than covered with plant materials. The results of the measurement may to summerized as follows; 1) Low-temperature effects of zoysia japonica is more controlled by condition of growth than leaf length of grass. Surface temperature make 0.7$^{\circ}C$ difference between long grass (15cm), and short grass (5cm), but make 5$^{\circ}C$ difference between good growth grass (230/10$\textrm{cm}^2$) and bad growth grass (80/10$\textrm{cm}^2$). 2) The surface temperature of the lawn area is 40.5$^{\circ}C$ lower on a maxinum than that of the artificial lawn (July 28, 1985). During the day of summer, shade area under the shade tree is 0.9$^{\circ}C$ lower then lawn area surface temperature, 6.9$^{\circ}C$ lower than bad growth lawn, 10.3$^{\circ}C$ lower than exposed soil, and 18$^{\circ}C$ lower than concrete surface temperature. 3) Natural irrigation effect on the surface temperature fluctuation. But this effect is changed by compositions of ground materials and time-lapse. 4) Sunny day is more effective than cloud day. 5) In summer season, surface temperature make a difference compare to temperature of 0.5-1.5m height from ground : Surface temperature is 3.4$^{\circ}C$ lower at the lawn area (11 a.m.), 4.2$^{\circ}C$ lower at the shade area the shade tree, 12.7$^{\circ}C$ higher at the concrete area (3p.m.), 38.8$^{\circ}C$ higher at the artificial lawn (2p.m.) 6) According to compositions of ground materials and season have specific vertical temperature distribution curve. 7) In summer season, temperature distribution of 0.5-1.5m hight at the shade tree is 4.8-5.7$^{\circ}C$ lower than concrete area (noon-3p.m.)

  • PDF

A Study of the Infrared Temperature Sensing System far Measuring Surface Temperature in Laser Welding(II) - Effect of the System Parameter on Infrared Temperature Measurement - (레이저용접부 온도측정을 위한 적외선 온도측정장치의 개발에 관한 연구 (II) - 적외선 온도측정에서 제인자의 영향 -)

  • 이목영;김재웅
    • Journal of Welding and Joining
    • /
    • v.20 no.1
    • /
    • pp.69-75
    • /
    • 2002
  • This study investigated the effect of the system parameters on penetration depth measurement using infrared temperature sensing system. The distance from focusing lens to detector was varied to diminish the error in measuring weld bead width. The effect of bead surface shape on measured surface temperature profile was evaluated using specimen heated by electric resistance. The measuring distance from laser beam was changed to optimize the measuring point. The results indicated that the monitoring device of surface temperature using infrared detector array was applicable to real time penetration depth control.

Molecular Dynamics of Carbon Nanotubes Deposited on a Silicon Surface via Collision: Temperature Dependence

  • Saha, Leton C.;Mian, Shabeer A.;Kim, Hyo-Jeong;Saha, Joyanta K.;Matin, Mohammad A.;Jang, Joon-Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.515-518
    • /
    • 2011
  • We investigated how temperature influences the structural and energetic dynamics of carbon nanotubes (CNTs) undergoing a high-speed impact with a Si (110) surface. By performing molecular dynamics simulations in the temperature range of 100 - 300 K, we found that a low temperature CNT ends up with a higher vibrational energy after collision than a high temperature CNT. The vibrational temperature of CNT increases by increasing the surface temperature. Overall, the structural and energy relaxation of low temperature CNTs are faster than those of high temperature CNTs.