• Title/Summary/Keyword: Korean solar energy

Search Result 4,974, Processing Time 0.032 seconds

Performance Evaluation of SiC Honeycomb Modules Used for Open Volumetric Solar Receivers (개방형 체적식 흡수기를 위한 SiC 허니컴 모듈의 성능 평가)

  • Chai, Kwan-Kyo;Lee, Hyun-Jin;Kim, Jong-Kyu;Yoon, Hwan-Ki;Lee, Sang-Nam;Han, In-Sub;Seo, Doo-Won
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.120-125
    • /
    • 2012
  • Daegu Solar Power Tower Plant of a 200 kW thermal capacity uses an open air receiver. An air receiver is generally based on the volumetric receiver concept with porous ceramic absorbers. Because absorber material is important in the volumetric receiver, ceramic materials with excellent thermal conductivity, high solar absorptivity and good thermal stability have been researched. KIER also developed SiC honeycomb absorber modules and evaluated performance of the modules at the KIER solar furnace. For performance evaluation, we made an open volumetric receiver containing the modules and measured the outlet temperature and the efficiency. It is demonstrated that performance of the KIER absorber is comparable to that of a reference absorber developed by DLR.

  • PDF

Down-Conversion Effect Applied to GaAs p-i-n Single Junction Solar Cell

  • Park, Jun-Seo;Kim, Ji-Hun;Go, Hyeong-Deok;Lee, Gi-Yong;Kim, Jeong-Hyeok;Han, Il-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.694-694
    • /
    • 2013
  • With the growing need of more effective energy harvesting, solar energy has been sought as one of the prominent candidates among the eco-friendly methods. Although many types of solar cells have been developed, the electronic conversion efficiency is limited by the material's physical properties: solar cells can only harvest solar energy from limited range in solar energy spectrum. To overcome this physical limit, we approached by using the down conversion effect, transforming the high energy photons to low energy photons, to the range the designated solar cell can convert to electronic energy. In our study, we have fabricated GaAs single junction solar cells and applied CdSe quantum dots for down-conversion. We examine the effects of such application on the solar cell efficiancy, fill-factor, JSC, VOC, etc.

  • PDF

A Characteristic Analysis on the Thermal Performance of the Dish Type Solar Concentrating System (Dish형 태양열 집광시스템 실증연구를 위한 집열성능 특성 분석)

  • Kang, Myeong-Cheol;Kang, Yong-Heack;Yoon, Hwan-Ki;Yoo, Seong-Yeon
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.1
    • /
    • pp.7-12
    • /
    • 2006
  • The dish type solar thermal concentrating system can collect the solar energy above $800^{\circ}C$. It has a concentration ratio of 800 and total reflector area of $49m^2$. To operate solar receivers at high temperature, the optimum aperture size is obtained from a comparison between maximizing absorbed energy and minimizing thermal losses. The system efficiency is defined as the absorbed energy by working fluid in receiver divided by the energy coming from the concentrator. We find that system efficiency is stable in case of flow rate of above 6lpm. The system efficiency are 64.9% and 65.7% in flow rate of 6lpm and 8lpm, respectively. The thermal performance showed that the maximum efficiency and the factor of thermal loss in flow rate of 8lpm are 68% and 0.0508.

Estimation of Solar Radiation Distribution in Korea Using a Satellite (인공위성을 이용한 국내 일사량 분포 예측)

  • Jo, Dok-Ki;Yun, Chang-Yeol;Kim, Kwang-Deuk;Kang, Young-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.99-106
    • /
    • 2011
  • Since the solar energy resource is the main input for sizing any solar photovoltaic system, it is essential to utilize the solar radiation data as an application and development of solar energy system increase. It will be necessary to understand and evaluate the insolation data. The Korea Institute of Energy Research(KIER) has begun collecting horizontal global insolation data since May, 1982 at 16 different locations in Korea and for the more detailed analysis, images taken by geostationary satellite may be used to estimate solar irradiance fluxes at earth"s surface. It is based on the empirical correlation between a satellite derived cloud index and the irradiance at the ground. From the results, the measured data has been collected at 16 different stations and estimated using satellite at 23 different stations over the South Korea from 1982 to 2009. The Result of analysis shows that the annual-average daily global radiation on the horizontal surface is 3.56 kWh/ $m^2$/day and estimated solar radiation fluxes show reliable results for estimating the global radiation with average deviation of -7.27 to +3.65% from the measured values.

The Analysis of a Potential Solar Energy Resource Map (태양에너지 가용잠재량 자원지도 분석)

  • Jeong, Jong-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.4
    • /
    • pp.573-579
    • /
    • 2012
  • Many countries have recently been expanding efforts for low-carbon global economy to solve the problem of global warming. Development and research for various types of new reusable energy is on the rise throughout the world. The most promising source of energy is the solar photovoltaic energy and the government take an initiative to establish both short-term and long-term policies to develop the solar energy potential resource map. The solar energy and industrialize area researched by GIS methods for optimum site for solar power transfer system. This study attempts to address the hot issue of the development and suitability of the solar photovoltaic energy site using GIS spatial analysis. We need to analyze and describe the solar technology, green energy policies and the energy market trend of the field.

Revaluation of Solar Radiation Energy Resources in Korea (국내 태양복사에너지 자원의 재평가)

  • Jo, Dok-Ki;Kang, Young-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.4
    • /
    • pp.15-21
    • /
    • 2009
  • Since the solar radiation is main input for sizing any solar photovoltaic system and solar thermal power system, it will be necessary to understand and evaluate the insolation data. The Korea Institute of Energy Research(KIER) has begun collecting horizontal global insolation data since May, 1982 and direct normal insolation data since December 1992 at 16 different locations. Because of a poor reliability of existing data, KIER's new data will be extensively used by solar energy system users as well as by research institutes. Among some significant results, the yearly averaged horizontal global insolation was turned out 3.60 kWh/$m^2$/day and the yearly mean 2.62 kWh/$m^2$/day of the direct normal insolation was evaluated for all days.

A Study on the Analysis of Solar Radiation on Inclined Surfaces (방위별 경사면일사량 분석에 관한 연구)

  • Jo, D.K.;Chun, I.S.;Jeon, M.S.;Kang, Y.H.;Auh, C.M.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.3
    • /
    • pp.19-24
    • /
    • 2001
  • The amount of incident solar rays on inclined surfaces with various directions has been widely utilized as important data in installing solar collector, hot water system, and photovoltaic module, and designing solar buildings and house. This is because the performance of the solar energy applied systems is much affected by angle and direction of incident rays. Recognizing those factors mentioned above are of importance, actual experiment has been peformed in this research to obtain the angle of inclination with which the maximum incident rays can be absorbed. The results obtained in this research could be used in designing optimal solar systems.

  • PDF

Fuzzy Logic based Admission Control for On-grid Energy Saving in Hybrid Energy Powered Cellular Networks

  • Wang, Heng;Tang, Chaowei;Zhao, Zhenzhen;Tang, Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4724-4747
    • /
    • 2016
  • To efficiently reduce on-grid energy consumption, the admission control algorithm in the hybrid energy powered cellular network (HybE-Net) with base stations (BSs) powered by on-grid energy and solar energy is studied. In HybE-Net, the fluctuation of solar energy harvesting and energy consumption may result in the imbalance of solar energy utilization among BSs, i.e., some BSs may be surplus in solar energy, while others may maintain operation with on-grid energy supply. Obviously, it makes solar energy not completely useable, and on-grid energy cannot be reduced at capacity. Thus, how to control user admission to improve solar energy utilization and to reduce on-grid energy consumption is a great challenge. Motivated by this, we first model the energy flow behavior by using stochastic queue model, and dynamic energy characteristics are analyzed mathematically. Then, fuzzy logic based admission control algorithm is proposed, which comprehensively considers admission judgment parameters, e.g., transmission rate, bandwidth, energy state of BSs. Moreover, the index of solar energy utilization balancing is proposed to improve the balance of energy utilization among different BSs in the proposed algorithm. Finally, simulation results demonstrate that the proposed algorithm performs excellently in improving solar energy utilization and reducing on-grid energy consumption of the HybE-Net.

Solar Radiation Evaluation for Components and Classified Wavelength in Korea (국내 성분 및 파장별 일사량 평가)

  • Jo, Dok-Ki;Yun, Chang-Yeol;Kim, Kwang-Deuk;Kang, Young-Heack
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.130-133
    • /
    • 2012
  • The Korea Institute of Energy Research(KIER) has began collecting solar radiation components data since January, 1988, and solar radiation classified wavelength data since November, 2008. KIER's solar radiation components and classified wavelength data will be extensively used by concentrating solar energy system users or designers as well as by research institutes.

  • PDF

Computer Simulation of Lower Farmland by the Composition of an Agrophotovoltaic System (영농형 태양광 발전 시스템 구성에 따른 하부 농지 일사량의 전산모사 연구)

  • Kim, DeokSung;Kim, ChangHeon;Park, JongSung;Kim, ChangHan;Nam, JaeWoo;Cho, JaiYoung;Lim, CheolHyun
    • New & Renewable Energy
    • /
    • v.16 no.1
    • /
    • pp.41-46
    • /
    • 2020
  • The share of agrophotovoltaics in the "renewable energy 3020", which is the Korean government policy for revitalizing new and renewable energy, is increasing gradually. In this study, the distribution of solar radiation received by crops growing on virtual farmland under a range of conditions, such as module height, module angle, shading ratio, and module type, was quantified and analyzed using an Ecotect program, which allows insolation analysis during the period from spring to fall. As the module angle increases, transmissive modules increase the amount of solar radiation delivered to the lower farmland. In addition, the difference between 3x12 Cell Type and 4x9 Cells Type, which are types of photovoltaic modules used in practice, was found to be small. The analysis results can be used as a design standard for the future establishment of agrophotovoltaic systems.