• Title/Summary/Keyword: Korean soil information system

Search Result 517, Processing Time 0.026 seconds

Geographic Information System and Remote Sensing in Soil Science (GIS와 원격탐사를 활용한 토양학 연구)

  • Hong, Suk-Young;Kim, Yi-Hyun;Choe, Eun-Young;Zhang, Yong-Seon;Sonn, Yeon-Kyu;Park, Chan-Won;Jung, Kang-Ho;Hyun, Byung-Keun;Ha, Sang-Keun;Song, Kwan-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.684-695
    • /
    • 2010
  • Geographic information system (GIS) is being increasingly used for decision making, planning and agricultural environment management because of its analytical capacity. GIS and remote sensing have been combined with environmental models for many agricultural applications on monitoring of soils, agricultural water quality, microbial activity, vegetation and aquatic insect distribution. This paper introduce principles, vegetation indices, spatial data structure, spatial analysis of GIS and remote sensing in agricultural applications including terrain analysis, soil erosion, and runoff potential. National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA) has a spatial database of agricultural soils, surface and underground water, weeds, aquatic insect, and climate data, and established a web-GIS system providing spatial and temporal variability of agricultural environment information since 2007. GIS-based interactive mapping system would encourage researchers and students to widely utilize spatial information on their studies with regard to agricultural and environmental problem solving combined with other national GIS database. GIS and remote sensing will play an important role to support and make decisions from a national level of conservation and protection to a farm level of management practice in the near future.

국가 지하수 정보 종합관리 체계의 구축과 활용(II) - 두레박 프로그램과 지하수세상 홈페이지 -

  • 손영철;김규범;최영진
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.270-274
    • /
    • 2000
  • We have developed the computer system with MOCT which is called "The Integrated National Groundwater Information system" since 1995 and now begin to supply the database and related informations for ground water by internet homepage. The integrated system is composed of four sub systems which are "Groundwater Information System", "DUREBAK", "Hydrogeologic Map Management System" and "Groundwater World Homepage". The local government offices use the "DUREBAK" program to manage the well development and maintenance. About 1,000,000 wells are managed in "DUREBAK" program and they submit the well database to MOCT every year. And now everyone can obtain the well data and other informations through internet homepage. We have set the standard process of data acquisition and management for ground water last four years.s of data acquisition and management for ground water last four years.

  • PDF

Experimental Technique for Trafficability on Soft Benthic Terrain (I) : Soil bin (해저 연약지반 주행성능 실험기법 연구 (I) : 주행실험토조)

  • Choi, Jong-Su;Hong, Sup;Kim, Hyung-Woo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.224-228
    • /
    • 2002
  • To study the trafficability on soft and cohesive benthic terrain, a soil bin is designed and constructed. The information of shear strength of pacific seafloor and the results of dimensional analysis of vehicle-train system are used as basic datum for concept design of soil bin. Cohesive benthic terrain is modeled by means of bentonite-water mixture. The shear strength of the mixture is measured by motorized shear meter. Several facilities are constructed for mixing and evening modeled soil, transporting vehicle model. The shear strength in soil bin is investigated for depth, age and velocity. The result of this study is used as basic information to the experiment, study for development of crawler on benthic terrain.

  • PDF

우리나라 토양오염부지관련 정보관리체계의 문제점 - 법ㆍ제도를 중심으로 -

  • 황상일;이양희
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.5-11
    • /
    • 2004
  • The objectives of this study is to find problems in the legal and institutional background on our information system for soil contaminated sites. To achieve this abjective, we compared our system with those of federal and New Jersey state governments of the United States. We found that we have no comprehensive guideline on how various information from the contaminated sites should be manipulated. In our system, some regulations on information management were found only in a few prescriptions on detection, detailed investigation, and remediation phases. However, we found that provisions, detailed procedures, and related guidelines for the information management are provided in tile case of the federal and New Jersey state governments. Also, public involvement and disclosure of tile information for the remediation procedure are designated in their legal systems.

  • PDF

Construction of forest environmental information and evaluation of forest environment (산림환경 정보구축 및 산림환경 평가)

  • Chang, Kwan-Soon
    • Journal of Environmental Impact Assessment
    • /
    • v.7 no.2
    • /
    • pp.37-51
    • /
    • 1998
  • This study was carried out to lead the scientific management of the urban forest by estimating the forest environment. Forest environmental information was constructed using IDRISI system based on survey data, soil, plant, and digital elevation data. Forest environmental information was consisted of soil depth, soil organic content, soil hardness and parent rock as a soil environmental factor, and forest community, tree age, crown density as a plant environmental factor. Plant activity and topographic environment also were analyzed by using remote sensing data and digital elevation data. Environmental function of urban forest was estimated based on results of soil conservation and forest productivity. 70% of urban forest is located in elevation of lower than 200m and 55% of forest area have the slope of lower than 15 degree. Analyzed soil conservation status and forest productivity were almost the same as the soil chemical properties of collected soil sample and the vegetation index estimated using remote sensing data, respectively. Thus, the constructed forest environmental information could be useful to give some ideas for management of urban forest ecosystem and establishment of environmental conservation planning, including forests, in Taejon. The best forest environmental function was appeared at the natural ecology preservation zone. Current natural parks and urban parks were appeared to establish the environmental conservation plan for further development. The worst forest environmental function was appeared at the forest near to the industrial area and an overall and systematic plan was required for the soil management and high forest productivity because these forest was developing a severe soil acidification and having a low forest productivity.

  • PDF

Evaluation of Evapotranspiration and Soil Moisture of SWAT Simulation for Mixed Forest in the Seolmacheon Catchment (설마천유역 혼효림에서 실측된 증발산과 토양수분을 이용한 SWAT모형의 적용성 평가)

  • Joh, Hyung-Kyung;Lee, Ji-Wan;Shin, Hyung-Jin;Park, Geun-Ae;Kim, Seong-Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.4
    • /
    • pp.289-297
    • /
    • 2010
  • Common practice of Soil Water Assessment Tool (SWAT) model validation is to use a single variable (i.e., streamlfow) to calibrate SWAT model due to the paucity of actual hydrological measurement data in Korea. This approach, however, often causes errors in the simulated results because of numerous sources of uncertainty and complexity of SWAT model. We employed multi-variables (i.e., streamflow, evapotranspiration, and soil moisture), which were measured at mixed forest in Seolmacheon catchment ($8.54\;km^2$), in order to assess the performance and reduce the uncertainties of SWAT model output. Meteorological and surface topographical data of the catchment were obtained as basic input variables and SWAT model was calibrated using daily data of streamflow (Jan. - Dec.), evapotranspiration (Sep. - Dec.), and soil moisture (Jun. - Dec.) collected in 2007. The model performance was assessed by comparing its results with the observation (i.e., streamflow of 2003 to 2008 and evapotranspiration and soil moisture of 2008). When the multi-variable measurements were used to calibrate the SWAT model, the model results showed better agreement with the measurements compared to those using a single variable measurement by showing increases in coefficient of determination ($R^2$) from 0.72 to 0.76 for streamflow, from 0.49 to 0.59 for soil moisture, and from 0.52 to 0.59 for evapotranspiration. The findings highlight the importance of reliable and accurate collective observation data for improving performance of SWAT model and promote its facilitation for estimating more realistic hydrological cycles at catchment scale.

Estimating USLE Soil Erosion through GIS-based Decision Support System

  • Her, Y.G.;Kang, M.S.;Park, S.W.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.7
    • /
    • pp.3-14
    • /
    • 2006
  • The objective of this study was to develop a GIS-based decision support system (GIS-USLE system) to estimate soil erosion and evaluate its effect on concentrated upland plots in Godang district, Korea. This system was developed for the ArcView environment using A VENUE script. Three modules were used in the GIS-USLE system, namely pre-processing, the USLE factors calculator module, and post-processing. This system benefits from a user friendly environment that allows users with limited computer knowledge to use it. This system was applied to 1,285 individual upland plots ranging from 0.005 to 1.347 ha in size with an average slope steepness of 14 %. The rainfall distributions were estimated using the three methods, namely Mononobe and Yen-Chow with Triangle and with Trapezoid type, and then used to calculate the rainfall erosivity factor. The soil erosion amounts from the 1,285 individual plots in the study area by 2 year return period with a 24h maximum rainfall amount of 154.6 mm were estimated at 5 tons/ha on average. Slope appeared to be the most important factor affecting soil erosion estimation, as expected. The prototype model was applied to the project area, and the results appeared to support the practical applications. By examining many fields simultaneously, this system can easily provide fast estimation of soil erosion and thus reveal the spatial pattern of erosion from fields in a region. This study will help estimate and evaluate soil erosion in concentrated upland districts and identify the best management practices.

Estimating Soil Losses from Saemangeum Watershed based on Cropping Systems (작부체계를 고려한 새만금유역의 토양유실량 추정)

  • Lee, Eun-Jeong;Cho, Young-Kyoung;Park, Seung-Woo;Kim, Hak-Kwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.6
    • /
    • pp.101-112
    • /
    • 2006
  • A Geographic Information System (GIS) was developed to estimate basin-wide soil losses using the Universal Soil Loss Equation (USLE). It was applied to estimate the annual average soil losses from the Saemangeum watershed. The USLE factors for each subarea of uniform land use and treatments were estimated from the GIS routines from digital topographic maps, land cover and detailed soil maps. A routine was developed to estimate the averaged cropping management factors (C) of USLE for multi-cropping farmlands, based on cropping system records from the district offices. The resulting C factors ranged from 0.28 to 0.35 for multi-cropping areas. The estimated annual average soil loss was approximately 2.9 million tonnes. Typical soil losses from different land uses were 0.8 t/ha at paddies, 33.7 t/ha at uplands and 1.1 t/ha from forested mountains. It was also found that 6.0% of the arable land of the watershed possessed high risks of soil losses, and conservation measures were needed to reduce soil losses.

A Study on the Soil Contamination in Incheon Metropolitan Area Based on GIS (GIS 기법을 이용한 인천지역의 토양오염도 작성에 관한 연구)

  • Park, Jeong-Jun;Shin, Eun-Chul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.4
    • /
    • pp.1-11
    • /
    • 2008
  • This paper analyzed the status of contaminated soils in order to manage it efficiently in Incheon using Geographic Information System (GIS) and investigated the concepts and techniques of the GIS and interpolation method. GIS technique is applied to the analysis of soil quality monitoring data. The purposes of this research are to assess the soil contamination of Incheon metropolitan area and to analyze the existing contents of heavy metals (Cd, Cu, As, Hg, Pb, $Cr^{+6}$) and pH in soil. The samples had been collected from year 1998 to year 2002 by the Soil Contamination Monitoring Network. The soil quality monitoring results were imported with the geographical information of the monitoring programs in capital area. It is found that currently available GIS technique has a great extend of potential for soil quality management. From the analysis of soil quality monitoring results, the GIS application demonstrates the poor soil quality in the central capital area and the it is improved as it travels down to the suburb area. Concerning about the data interpolation, the discrepancy caused by applying different method was ignorable, although Kriging method is further developed.

Correlation between Soil Nutrient Contents and Water Pollutant Loads in Hydrologic Unit Watersheds: Implication on the Total Maximum Daily Loads (TMDLs) (수질오염총량관리 단위유역내 토양 양분 및 수질오염 부하량 상관관계 비교)

  • Cho, Kyung-Sik;Lee, Ho-sik
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.509-515
    • /
    • 2011
  • For this study the 4 sub-watersheds Okdong A, Hankang B, Jecheon A and Hankang C which are the main streams of the Han River within the mid-level region of Chungju Dam are selected and the analysis of soils has been carried out through the soil basic survey. When it comes to the soil erosion amount the soil nutrient load has been calculated by utilizing the RUSLE erosion equation. In case of the data related to the measurement of water flow and quality the information available from the "Water Information System" one of the websites run by the Ministry of Environment has been used to calculate the water pollution load. The correlation between the soil nutrient load and the water pollutant load has been analyzed through making comparison. According to the results related to the soil nutrient load of each sub-watershed the Hankang C shows the highest values TOC 29,986.92 ton/yr, TN 3,860.33 ton/yr and TP 973.97 ton/yr respectively. Even when it comes to the loads related to water quality the Hankang C shows also comparatively high values TOC 6,625.64 ton/yr, TN 7,335.01 ton/yrand TP 145.49 ton/yr respectively. The soil nutrient loads of the sub-watersheds are shown to increase towards the lower stream meaning the load increases in the order of Hankang CHankang B and Okdong A. When it comes to the water pollutant load the value goes up along down the water system meaning the load gets higher in the order of Hankang C, Hankang B and Okdong A while utilizing the mainstream within the mid-level region of Chungju Dam as the basis. The correlation study showed that the nutrient content of soil is proportional to the pollutant load in water with the strongest positive correlation with TOC.