• Title/Summary/Keyword: Korean reservoir

Search Result 2,677, Processing Time 0.031 seconds

Estimation of Reservoir Area and Capacity Curve Equation using UAV Photogrammetry (무인항공기 사진측량에 의한 저수면적과 저수량 곡선식 산정)

  • Lee, Geun Sang;Choi, Yun Woong;Lee, Suk Bae;Kim, Seok Gu
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.3
    • /
    • pp.93-101
    • /
    • 2016
  • Reservoir area and reservoir capacity must be evaluated for reservoir management such a water supply, water-purity control and so on. In this paper, the reservoir area and reservoir capacity according to the level of storage range of water(149~156 El.m) could be calculated by using TIN data model of study area, Gyoyeon reservoir, TIN data model was made of DSM which was created by using UAV and GCP survey. From the results of applying the various functions to reservoir area and capacity, reservoir area and reservoir capacity according to the level of storage range of water showed the highest coefficient of determination of 0.97 in fourth-order polynomial, and 0.99 in second-order polynomial, respectively. Thus, it could be expected the efficient reservoir management by estimating reservoir area and capacity curve equation through UAV photogrammetry.

A Linear Reservoir Model with Kslman Filter in River Basin (Kalman Filter 이론에 의한 하천유역의 선형저수지 모델)

  • 이영화
    • Journal of Environmental Science International
    • /
    • v.3 no.4
    • /
    • pp.349-356
    • /
    • 1994
  • The purpose of this study is to develop a linear reservoir model with Kalman filter using Kalman filter theory which removes a physical uncertainty of :ainfall-runoff process. A linear reservoir model, which is the basic model of Kalman filter, is used to calculate runoff from rainfall in river basin. A linear reservoir model with Kalman filter is composed of a state-space model using a system model and a observation model. The state-vector of system model in linear. The average value of the ordinate of IUH for a linear reservoir model with Kalman filter is used as the initial value of state-vector. A .linear reservoir model with Kalman filter shows better results than those by linear reserevoir model, and decreases a physical uncertainty of rainfall-runoff process in river basin.

  • PDF

A Study on Fluoride Content in the Reservoirs Of Iksan Region (익산지역 수원지의 불소함량에 관한 조사연구)

  • Lee, In-Kyu
    • Journal of Technologic Dentistry
    • /
    • v.20 no.1
    • /
    • pp.139-143
    • /
    • 1998
  • This study was carried out to collect basic dates on fluoride intake from drinking water, and the apperance of mottled teeth after taking samples form 5 selected waterways from Iksan region's reservoir to the filtration plant for examination of the fluoride content. The results are as follows. 1. It indicatied that from Hoojung reservoir $2.17{\pm}0.95ppm$, Bulsan reservoir $1.93{\pm}0.23ppm$ and Yoolso reservoir $2.19{\pm}0.10ppm$. 2. Significances were found between Shinhung reservoir $2.57{\pm}1.22ppm$ and Uhwoo reservoir $0.80{\pm}0.55ppm$. 3. Except for the Uhwoo reservoir, the remaining 4 reservoir exceeded the standard fluoride content of 0.50-1.00ppm. For the residents in the region where they use natural water with fluoride content exceeding the standard 1.00ppm as their drinking water and the apperance of mottled teeth should be carried out.

  • PDF

A Study on the Dong-eup Reservoir Stage Computation by Probabilistic Inflows (확률홍수량 유입에 따른 동읍유수지 홍수위 산정에 관한 연구)

  • Choi, Ji-Hye;Bae, Deg-Hyo;Yoon, Sung-Yoon
    • Journal of Wetlands Research
    • /
    • v.3 no.1
    • /
    • pp.49-59
    • /
    • 2001
  • The objective of this study is to provide the results of frequency analysis for Dong-eup reservoir, in which the environmental and ecological roles in addition to the water supply and flood control capacity of the reservoir are increased rapidly. The suggested results are the frequency analysis of annual maximum rainfall data based on eight different rainfall duration data at Masan and Milyang raingauge stations. We also provide the probabilistic inflows from subbasins and evaluate the stage increases of the reservoir. As results, the 24-hour and 100-year return period rainfall is 291.8 mm and consequently inflows are 361.79 cms for Junam, 192.57 for Sannam and 408.28 for Dongpan reservoirs. The 24-hour and 100-year return period reservoir stages are expected as 5.08 m, 5.51 m and 6.89 m depending on the initial reservoir stage. The suggested results of frequency analysis of rainfalls, inflows and reservoir stages in this study will be useful for the scientific and systematic management of the reservoir.

  • PDF

Estimation of Inflows to Jangchan Reservoir from Outside Watershed by Minimizing Reservoir Water Storage Errors (저수량 오차에 의한 장찬저수지의 유역외 유입량 추정)

  • Noh, Jae-Kyoung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.5
    • /
    • pp.61-68
    • /
    • 2010
  • Jangchan reservoir is located in Okcheon county, Chungbuk province, of which watershed area is $29.4\;km^2$ from outside, and $5.1\;km^2$ from inside watershed, effective storage capacity is $392{\times}10^4\;m^3$, paddy area to be irrigated is 474 ha. To determine inflows from Keumcheon weir located in outside watershed on an optimum level, a repeated procedure which is composed of simulation of inflows to Keumcheon weir, setting of range of water taking at Keumcheon weir, simulation of inflows to Jangchan reservoir, estimation of paddy water from Jangchan reservoir, and simulation of water storages in Jangchan reservoir was selected. Parameters of DAWAST model for simulating inflows to Jangchan reservoir were determined to UMAX of 315 mm, LMAX of 21 mm, FC of 130 mm, CP of 0.018, and CE of 0.007 with absolute sum of errors in reservoir water storages minimized using unconstrained Simplex method because of no inflows data. Inflows to Keumcheon weir were simulated to $2,132{\times}10^4\;m^3$ on an annual average. Optimal range of water taking at Keumcheon weir to transfer to Jangchan reservoir were $0.81{\sim}50\;mm/km^2/d$, which were summed up to $1,397{\times}10^4\;m^3$ in 66% of total on an annual average. Inflows to Jangchan reservoir were simulated to $1,739{\times}10^4\;m^3$ on an annual average of which were 80 % from Keumcheon weir of outside watershed. Requirements to paddy water from Jangchan reservoir were estimated to $543{\times}10^4\;m^3$ on an annual average.

Prediction of Reservoir Sedimentation Patterns Using a Two-Dimensional Transport Model (2차원 유사운송모형을 이용한 저수지 퇴적분포유형의 추정)

  • 이봉훈;박창헌;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.1
    • /
    • pp.50-58
    • /
    • 1993
  • The sedimentation patterns at a reservoir, important to the reservoir capacity curve were simulated using a depth averaged, two-dimensional sediment transport model, that is capable of depicting velocity distributions and sediment transportation. The Banweol reservoir, whose stage capacity relationships have been surveyed before and after the construction, was selected and the daily inflow rates and stages were simulated using a reservoir operation model(DI-ROM). The applicability of the transport model was tested from the comparisons of simulated sedimentation patterns to the surveyed results. The simulated inflow rates and water level fluctuations at the reservoir during twenty-one years from 1966 to 1986, showed that water levels exceeding 80 percent of the total capacity occurred for 70 percent of the periods and inflow rates less than 5000rn$^3$/day sustained for 54 percent of the spans. Dorminant flow directions were simulated from two streamflow inlets to the dam site. And simulated sediment concentrations were higher near the inlets and lower at the inside of the reservoir. Sediment was deposited heavily near the inlets, and portions of sediments were distributed along the flow paths within the reservoir. The comparisons between the simulation results and the surveyed depositions were partially matched. However, it was not possible to compare two results at the upper parts of the reservoir where dredging was carried out few times for the purpose of reservoir maintenance. This study demonstrates that sedimentation patterns within the reservoir are closely related to incoming sediment and flow rates, water level fluctuations, and flow circulation within the reservoir.

  • PDF

Comparison of Taste and Odor in Raw Water from the Main Daecheong Reservoir and Its Regulating Reservoir Downstream (대청호 원수와 하류 역조정지 원수에서의 이취미 비교)

  • Bae, Byung-Uk;Lee, Yu-Jeong;Lim, Mun-Gu
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.5
    • /
    • pp.598-602
    • /
    • 2008
  • The Daecheong Reservoir is the largest multi-purpose reservoir in the Keum River basin. This water supply is subject to some of the most serious taste and odor (T&O) problems in the region. The intensity of T&O events increased due to eutrophication during the 1990s. In this study, the temporal occurrence of T&O in raw water from the main Daecheong Reservoir and its regulating reservoir was compared using both an instrumental method (CLSA+GC/MS) and threshold odor number (TON) test from April to December 2006. In addition, biofilms on the submerged macrophytes and rocks were analyzed for two typical T&O causing compounds, Geosmin and 2-MIB. The maximum concentration of Geosmin in the main reservoir was almost two times higher than that in the regulating reservoir. Interestingly, 2-MIB was only detected in water samples from the main reservoir. In the case of T&O causing compounds present in the biofilm on the submerged macrophytes and rocks, the regulating reservoir had lower concentrations compared to those of the main reservoir. It was found that both Geosmin and 2-MIB were detected from the biofilms much earlier than from the water samples. This result suggests that the occurrence of T&O compounds in the biofilms could be used as an early warning indicator of an imminent T&O outbreak in the water body.

Evaluation of Systematic Safety for a Small Reservoir Group based on System Reliability Technique (체계 신뢰성 기법을 이용한 소규모 저수지군의 시스템적 안전도 평가)

  • Park, Jin-Seon;Jeon, Jeong-Bae;Yoon, Seong-Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.3
    • /
    • pp.101-108
    • /
    • 2015
  • The purpose of this study was to evaluate the safety of the small reservoir, which is distributed in a rural area, based on systemic reliability. It has been estimated that safety of respective reservoir the calculation of failure probability for individual reservoirs can evaluate the safety of the reservoir of the study area. The change of safety for watershed could be figured out as that result. Probability of failure was increased from $3.90{\times}10^{-5}$ to $1.35{\times}10^{-4}$ in Naesu-inpyung reservoir, from $1.33{\times}10^{-5}$ to $4.77{\times}10^{-5}$ in Buyeon reservoir and from $4.24{\times}10^{-5}$ to $2.55{\times}10^{-2}$ in Dalakmal respectively. From the results, the collapse of the upper stream reservoir was analyzed qualitatively that may affect the safety of the reservoir on the downstream area.

Prediction of water quality in estuarine reservoir using SWMM and WASP5 (SWMM과 WASP5 모형을 사용한 하구담수호의 수질 예측)

  • Yoon, Chun-Gyeong;Ham, Jong-Hwa
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.3
    • /
    • pp.252-258
    • /
    • 2000
  • SWMM and WASP5 were applied for pollutant loading estimate from watershed and reservoir water quality simulation, respectively, to predict estuarine reservoir water quality. Application of natural systems to improve estuarine reservoir water quality was reviewed, and its effect was predicted by WASP5. Study area was the Hwa-Ong reservoir in Hwasung-Gun, Kyonggi-Do. Procedures for estimation of pollutant loading from watershed and simulation of corresponding reservoir water quality were reviewed. In this study, SWMM was proved to be an appropriate watershed model to the nonurban area, and it could evaluate land use effects and many hydrological characteristics of catchment. WASP5 is a well known lake water quality model and its application to the estuarine reservoir was proved to be suitable. These models are both dynamic and the output of SWMM can be linked to the WASP5 with little effort, therefore, use of these models for reservoir water quality prediction in connection was appropriate. Further efforts to develop more logical and practical measures to predict reservoir water quality are necessary for proper management of estuarine reservoirs.

  • PDF

Development and Application of Agricultural Reservoir Water Quality Simulation Model (ARSIM-rev) (농업용 저수지 수질모델 (ARSIM-rev) 개발 및 적용)

  • Haam, Jong Hwa;Kim, Dong Hwan;Kim, Hyung Joong;Kim, Mi-Ock
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.65-76
    • /
    • 2012
  • Agricultural reservoir water quality simulation model (ARSIM-rev) was developed in this study for water quality simulation of a small and shallow agricultural reservoir with limited observed water quality data. Developed ARSIM-rev is a zero-dimensional water quality model because of little spatial differences in water quality between stations in a small and shallow agricultural reservoir. ARSIM-rev used same water quality reaction equations with WASP except for several equations, and daily based input parameters such as settling rate, release rate from sediment, and light extinction coefficient changed yearly based input parameters in ARSIM-rev. A number of pre- and post-processors were developed such as auto calibration and scenario analysis for ARSIM-rev. CE-QUAL-W2, WASP, and developed ARSIM-rev were applied to Mansu agricultural reservoir to evaluate model performance, and ARSIM-rev demonstrated similar model performance with CE-QUAL-W2 and WASP when low number of observed data was used for agricultural reservoir water quality simulation. Overall, developed ARSIM-rev was feasible for water quality simulation in a small and shallow agricultural reservoir with limited observed water quality data, and it can simulate agricultural reservoir water quality precisely enough like common water quality model such as CE-QUAL-W2 and WASP within a limited time.