• 제목/요약/키워드: Korean red ginseng(RG)

검색결과 327건 처리시간 0.028초

홍삼제조과정 중 파낙사트리올계 진세노사이드의 물질균형 (The Mass Balance of Protopanaxtriol Ginsenosides in Red Ginseng Process)

  • 이상명
    • 생약학회지
    • /
    • 제46권3호
    • /
    • pp.223-228
    • /
    • 2015
  • This mass balance study about ginsenoside Rg1 and Re in Red ginseng processed from Fresh ginseng is useful to understand that herbal material sources of ginseng and raw material consumption in Red ginseng preparations. In our results, total molar amounts of ginsenoside Rg1, Re and their converts in Fresh ginseng, Red ginseng, and Red ginseng extract are substantially the same. The molar amounts of ginsenoside Rg1, Re (4.324, 2.880 μmol/g) as starting materials in Fresh ginseng are kept constant as total molar amounts (sum of starting and converts) in Red ginseng (4.264, 2.596 μmol/g) and Red ginseng extract (3.389, 3.129 μmol/g). This result means that protopanaxtriol type ginsenosides and their characteristic converts are not destroyed or inflowing in Red ginseng process. Therefore, it is important for quality assurance of Red ginseng preparations that the ratio between ginsenosides Rg1, Re and these converts is kept constant.

Changes in the Contents of Prosapogenin in the Red Ginseng (Panax ginseng) Depending on Steaming Batches

  • Lee, Sun-A;Jo, Hee-Kyung;Im, Byung-Ok;Kim, Sung-Un;Whang, Wan-Kyun;Ko, Sung-Kwon
    • Journal of Ginseng Research
    • /
    • 제36권1호
    • /
    • pp.102-106
    • /
    • 2012
  • This study compared the contents of ginsenosides depending on steaming conditions of red ginsengs to provide basic information for developing functional foods using red ginsengs. The red ginseng steamed eight times at $98^{\circ}C$ ranked atop the amounts of prosapogenins ever detected in red ginsengs (ginsenoside $Rg_2$, $Rg_3$, $Rg_5$, $Rg_6$, $Rh_1$, $Rh_4$, $Rk_1$, $Rk_3$, $F_1$, $F_4$, 1.15%) among red ginsengs steamed more than twice. When steamed eight times at $98^{\circ}C$, 2.7 times as much prosapogenins such as ginsenosides $Rg_2$, $Rg_3$, $Rg_5$, $Rg_6$, $Rh_1$, $Rh_4$, $Rk_1$, $Rk_3$, $F_1$, and $F_4$ as those steamed just once at $98^{\circ}C$ was collected. In addition, the red ginsengs steamed eight times at $98^{\circ}C$ contained more amounting ginsenoside $Rg_3$ (0.28%) than that in the red ginseng steamed several times at random. Accordingly, it is recommendable that red ginsengs steamed 8 times, which proved to be the optimal steaming condition, be used rather than those steamed 9 times (black ginsengs), in order to develop red ginseng products of high prosapogenin concentration and high functions.

Ginsenoside Changes in Red Ginseng Manufactured by Acid Impregnation Treatment

  • Kim, Mi-Hyun;Hong, Hee-Do;Kim, Young-Chan;Rhee, Young-Kyoung;Kim, Kyung-Tack;Rho, Jeong-Hae
    • Journal of Ginseng Research
    • /
    • 제34권2호
    • /
    • pp.93-97
    • /
    • 2010
  • To enhance the functionalities of ginseng, an acid impregnation pre-treatment was applied during red ginseng processing. Acetic, ascorbic, citric, malic, lactic, and oxalic acid were used for the acid impregnation treatment, and total and crude saponin concentrations and ginsenoside patterns were evaluated. Total and crude saponin contents of red ginseng pre-treated by acetic, ascorbic, and citric acid were similar to those of red ginseng without pre-treatment, whereas lactic, malic, and oxalic acid pre-treatment caused a reduction of total and crude saponin in red ginseng. From the high performance liquid chromatography analysis of ginsenosides, increased $Rg_3$ density was shown in red ginseng pre-treated by acetic, ascorbic, and citric acid impregnation. In the case of lactic, malic, and oxalic acid pre-treatment, increased $Rg_1$ density was observed in red ginseng. Increased $Rg_1$ and $Rg_3$ contents due to acid impregnation during red ginseng processing may contribute to improving bioactive functionalities of red ginseng.

Change in Ginsenosides and Maltol in Dried Raw Ginseng during Extrusion Process

  • Ha, Dae-Chul;Lee, Jong-Won;Ryu, Gi-Hyung
    • Food Science and Biotechnology
    • /
    • 제14권3호
    • /
    • pp.363-367
    • /
    • 2005
  • Although widely applied in the food industry, extrusion cooking has not been applied to the traditional red ginseng process for steaming and drying ginseng. We therefore investigated the change in the effective components in red ginseng (total saponins, ginsenosides and maltol) from extruded raw ginseng. The variables were the drying temperature of the sliced raw ginseng (80 and $90^{\circ}C$) before the extrusion process and the moisture content (15 and 22%, w.b.) during the extrusion process. Ginsenosides Rg1 and Rg2 were detected in dried ginseng at $80^{\circ}C$, but ginsenoside Rg3, which was contained in red ginseng, was not detected. On the other hand, ginsenosides Rg1, Rg2 and Rg3 were detected in extruded ginseng at moisture contents of 15 and 22%. Total ginsenosides were highest at $90^{\circ}C$ drying temperature and 22% moisture content for the extrusion process.

Production of Red Ginseng Specific Ginsenosides $(Rg_2, Rg_3, Rh_1 and Rh_2)$ from Agrobacterium-transformed hairy Roots of Panax ginseng by Heat Treatment

  • Yang, Deok-Chun;Yang, Kye-Jin;Park, Yong-Eui
    • Journal of Photoscience
    • /
    • 제8권1호
    • /
    • pp.19-22
    • /
    • 2001
  • It was reported that Red ginseng contains specific ginsenoside-Rg$_2$,-Rg$_3$,-Rh$_1$and -Rh$_2$, which show various pharmacological effects. However, production of these specific ginsenosides from Red ginseng is not commercially applicable because of high cost of the raw material, roots. This work was carried out to examine the production of Red ginseng specific ginsenosides from Agrobacterium-transformed hairy roots. Hairy roots were induced from 3 year-old root segment of Korean ginseng (Panax ginseng C.A. Meyer) after infection with Agrobacterium rhizogenes A4. Among many lines of hairybroots, KGHR-8A was selected. Steam heat treatment of hairy roots was resulted in the changes of ginsenoside composition. Eleven ginsenosides were detected in heat-treated hairy roots but eight in freeze dried hairy roots. In heat treated hairy root, content of ginsenoside-Rb$_1$,Rb$_2$,Rc, Rd, Re, Rf, and Rg$_1$were decreased compared to those of freeze dried hairy roots. However, heat treatment strongly enhanced the amount of Red ginseng specific ginsenogides (ginsenoside-Rg$_2$,-Rg$_3$,-Rh$_1$and -Rh$_2$). Amounts of ginsenoside-Rg$_3$,-Rh$_1$and -Rh$_2$ in heat-treated hairy roots were 2.58, 3.62 and 1.08 mg/g dry wt, respectively, but these were detected as trace amount in hairy roots without heat treatment. Optimum condition of heat treatment for the production of Red ginseng specific ginsenoside was 2 h at 105$^{\circ}C$. This result represents that Red ginseng specific ginsenoside can be producted from hairy roots by steam heat treatment.

  • PDF

홍삼의 약리와 독성 기전에 대한 고찰 (Review of Red Ginseng in terms of Mechanisms for Pharmacodynamics and Toxicity)

  • 박영철;임정대;김종봉;이선동
    • 대한한의학회지
    • /
    • 제33권3호
    • /
    • pp.200-230
    • /
    • 2012
  • Objectives: Ginseng, Panax ginseng C. A., white ginseng, has been used for thousands of years in Traditional Korean Medicine. Red ginseng can be made by a steaming process of white ginseng changing a variety of ginsenosides and ingredients such as dencichine. This article reviews red ginseng for mechanisms for pharmacodynamics and toxicity based on the content of ginseng's active ingredients, ginsenoside changed by steaming. Methods: The following electronic databases were searched: PubMed, Science Direct and Chinese Scientific Journals full text database (CQVIP), and KSI (Korean Studies Information) from their respective inceptions to June 2012. Results: Compared with unsteamed ginseng, the content of ginsenosides Rg2, Rg3, Rg5, Rh1, Rh2 and Rk1 called red ginseng-specific ginsenosides increased after the steaming process. Different ginsenosides have shown a wide variety of effects such as lowering or raising blood sugar and blood pressure or stimulating or sedating the nervous system. Especially, the levels of Rg2, Rg3, Rg5, Rh1, Rh2 and Rk1 were increased by the steaming process, showing a variety of pharmacodynamics in biological systems. Also, various processing methods such as puffing and fermentation have been developed in processing crude ginseng or red ginseng, affecting the content of ginseng's ingredients. The safety issue could be the most critical, specifically, on changed ginseng's ingredients such as dencichine. The level of dencichine was significantly reduced in red ginseng by the steaming process. In addition, the possible toxicity for red ginseng was affected by cytochrome P450, a herbal-drug interaction. Conclusions: The variety of pharmacological and toxicological properties should be changed by steaming process of Panax ginseng C. A., white ginseng. Even if it is not sure whether the steaming process of white ginseng would be better pharmacologically, it is sure that steaming reduces the level of dencichine causing a lower toxicity to the nervous system.

흑삼과 홍삼의 인삼 프로사포게닌 성분 비교 (The Comparison of Ginseng Prosapogenin Composition and Contents in Red and Black Ginseng)

  • 조희경;성민창;고성권
    • 생약학회지
    • /
    • 제42권4호
    • /
    • pp.361-365
    • /
    • 2011
  • The objective of this study is to provide basic information for developing a high-value ginseng product using ginseng saponin and prosapogenin. In order to achieve the proposed objective ginsenoside compositions of Black (BG) and Red (RG) ginseng extract with 95% ethyl alcohol were examined by means of HPLC. The crude saponin and ginsenoside composition of processed ginseng products were analyzed and compared, with BG topping the list with a crude saponin content of 7.53%, followed by RG (5.29%). Ginseng prosapogenin (ginsenosides $Rg_2$, $Rg_3$, $Rg_5$, $Rg_6$, $Rh_1$, $Rh_4$, $Rk_1$, $Rk_3$, $F_1$ and $F_4$) in BG was found to be contained almost 2.6 times as much as that in RG. Ginsenosides $Rg_3$, $Rg_5$, $Rk_1$, $Rh_4$ and $F_4$ in BG in particular were found to be almost 3 times as much as those in RG. $Rg_6$ and $Rk_3$ in BG were also found to be almost 4 times as much as those in RG.

Alleviation of diabetic complications by ginsenoside Rg3-enriched red ginseng extract in western diet-fed LDL-/- mice

  • Saba, Evelyn;Kim, Seung-Hyung;Kim, Sung-Dae;Park, Sang-Joon;Kwak, Dongmi;Oh, Jun-Hwan;Park, Chae-Kyu;Rhee, Man Hee
    • Journal of Ginseng Research
    • /
    • 제42권3호
    • /
    • pp.352-355
    • /
    • 2018
  • In this study, we precisely showed how the Rg3-enriched red ginseng extract (Rg3-RGE) lowers glucose, triglyceride, and low-density lipoprotein (LDL) levels in $LDL^{-/-}$ mice. Aspartate aminotransferase/serum glutamic-oxaloacetic transaminase), alanine aminotransferase /serum glutamate-pyruvate transaminase, and steatohepatitis were found to be reduced, and atheroma formation was inhibited by Rg3-enriched red ginseng extract.

The Changes of Ginsenoside Patterns in Red Ginseng Processed by Organic Acid Impregnation Pretreatment

  • Kim, Mi-Hyun;Lee, Young-Chul;Choi, Sang-Yoon;Cho, Chang-Won;Rho, Jeong-Hae;Lee, Kwang-Won
    • Journal of Ginseng Research
    • /
    • 제35권4호
    • /
    • pp.497-503
    • /
    • 2011
  • In order to enhance bioactive functionalities of ginseng, an acid impregnation processing was applied as a pre-treatment in producing red ginseng. Acid impregnation studies were conducted, and acids (ascorbic, malic, and citric acid) were selected. The optimal concentration of each acid was investigated in this study in terms of ginsenoside contents. The most concerned ginsenoside, $Rg_3$ was increased by ascorbic, malic, and citric acid pre-treated red ginseng up to 1 M acid concentration. In the case of ascorbic acid pre-treated red ginseng, $Rg_2$ concentration was increased depending on acid concentrations. Citric acid pre-treatment enhanced $Rg_2$, $Rg_3$, and $Rh_1+Rh_2$ formation in red ginseng. Therefore, ginsenoside patterns in red ginseng could be changed by acid impregnation pre-treatment depending on acid concentration and acid types. This research is expected to contribute to the development of the ginseng industry via new red ginseng products with selective and intensified functionality.