• Title/Summary/Keyword: Korean news articles

Search Result 330, Processing Time 0.03 seconds

An Exploratory Study on Social Participation Needs among the Elderly: Q-Methodological Approach (노년기 사회참여 욕구에 관한 탐색적 연구: Q 방법론의 적용)

  • Kim, Junghyun;Roh, Eunyoung
    • 한국노년학
    • /
    • v.38 no.4
    • /
    • pp.871-889
    • /
    • 2018
  • This study aims to explore social participation needs among the elderly in Korea from the perspective of the elderly participant's. 40 Q-samples are drawn from the Q-population including attitudes and needs toward social participation in later life based on news articles, essays, research, documentary, and television shows. 35 subjects are analysed by the QUANL program and the types of social participation needs are divided into four patterns which accounted for 60.16% of the total variance. The elderly's portrayal of an ideal social participation is about making independent decisions and being able to actively participate in the activities they chose to do. However, their most undesirable scenario would be being confused and uncertain of what they should do the remainder of their lives. The needs of social participation among the elderly varies on four indicators such as ego, social capital, life satisfaction, life vitality and these four indicators have two sub-categories with a total of 8 types of classification. These 8 types differ by priorities, adaptation to life changes, motivation to social participation, and desired activity. Findings suggest that researchers and policy makers need to consider service user perspective on social participation in later life, not service provider perspective.

Discovering the Knowledge Structure of Graphene Technology by Text Mining National R&D Projects and Newspapers (국가R&D과제와 신문에서 텍스트마이닝을 통한 그래핀 기술의 지식구조 탐색)

  • Lee, Ji-Yeon;Na, Hye-In;Lee, Byeong-Hee;Kim, Tae-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.2
    • /
    • pp.85-99
    • /
    • 2021
  • Graphene, called the "dream material" is drawing attention as a groundbreaking new material that will lead the era of the 4th Industrial Revolution. Graphene has high strength, excellent electrical and thermal conductivity, excellent optical permeability, and excellent gas barrier properties. In this paper, as the South Korean government recently announced Green New Deal and Digital New Deal policy, we analyze graphene technology, which is also attracting attention for its application to Corona 19 biosensor, to understand its national R&D trend and knowledge structure, and to explore the possibility of its application. Firstly, 4,054 cases of national R&D project information for the last 10 years are collected from the National Science & Technology Information Service(NTIS) to analyze the trend of graphene-related R&D. Besides, projects classified as green technology are analyzed concerning the government's Green New Deal policy. Secondly, text mining analysis is conducted by collecting 500 recent graphene-related articles from e-newspapers. According to the analysis, the field with the largest number of projects was found to be high-efficiency secondary battery technology, and the proportion of total research funds was also the highest. It is expected that South Korea will lead the development of graphene technology in the future to become a world leader in diverse industries including electric vehicles, cellular phone batteries, next-generation semiconductors, 5G, and biosensors.

Matching Analysis between Actress Son Ye-jin's Core Persona and Audience Responses to Her Starring Works (배우 손예진의 코어 페르소나와 주연 작품에 대한 수용자 반응과의 정합성 분석)

  • Kim, Jeong-Seob
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.4
    • /
    • pp.93-106
    • /
    • 2019
  • Persona is an actor's external ego constructed by playing various roles, and his/her another self-portrait in the eyes of the audience. This study was conducted to analyze persona identity containing core persona(CP) and to gain implications for the growth strategy of the actress Son Ye-jin called "melo queen" by verifying consistency between the CP and audience responses to her starring works of the past. According to the related theories and models, the persona was firstly set as image, visuality, personality and consistency, and it was used to extract and sort descriptive texts about Son related news articles in the last 5 years of the six major Korean newspapers using the content analysis method. After that, we analyzed the number of viewers of her movies and the audience share of her dramas by genre. As a result, Son's persona components were found to have a proportion for 54.2% images (34.0% for melo and romance images, 20.2% for non-melo and romance images), 25.6% for visibility, 13.8% for consistency, and 6.4% for personality. Her CP was derived from a melo and romance image. Comparing this with the audience reaction, the melo romance genre dominated and showed consistency in the drama, but in the case of the film, the non-melo romance was dominant and did not match each other. The results were attributed to a wide gap between dramas and movies in terms of key viewers, box office factors, degree of genre hybridity and experimentality. Therefore, Son should actively use her CP in the drama and challenge the various roles in order to expand her persona spectrum in the film.

Musicals and Memories of the March 1 Independence Movement - Centered on the musical Shingheung Military School, Ku: Songs of the Goblin, Watch (기념 뮤지컬과 독립운동의 기억 -<신흥무관학교>, <구>, <워치>를 중심으로)

  • Chung, Myung-mun
    • (The) Research of the performance art and culture
    • /
    • no.43
    • /
    • pp.229-261
    • /
    • 2021
  • On the musical stage in 2019, there were many works depicting the Japanese colonial period. This is due to 2019 the timeliness of the March 1st Movement and the centennial of the establishment of the Provisional Government of the Republic of Korea. The way of remembering and commemorating historical facts reflects the power relationship between memory subjects and the time, namely the politics of memory. Until now, stage dramas dealing with the era of Japanese rule have focused on the commemoration of modern national and national defense, including feelings of misfortune and respect for patriots. This study analyzed the metaphor of the memorials emphasized to the audience in the commemorative musicals Shingheung Military School, Ku: Songs of the Goblin, and Watch which were performed in 2019, and looked at how to adjust memories and memorials. The above works highlight the narratives of ordinary people as well as those recorded against the backdrop of the Manchurian Independence Movement and Hongkou Park, expanding the object of the commemoration. Through this, active armed resistance efforts, self-reflection and reflection were highlighted. The case of Shingheung Military School revealed the earnestness of ordinary people who led the independence movement through the movement of central figures. Ku: Songs of the Goblin revises memories by reproducing forgotten objects and apologizing through time slip. Watch has strengthened the spectacles of facilities through documentary techniques such as photography, news reels, and newspaper articles, but it also reveals limitations limited to records. In the 3.1 Movement and the 100th anniversary of the establishment of the Provisional Government of the Republic of Korea, devices that actively reveal that the "people's movement" is connected to the present. To this end, the official records reflected the newly produced values and memories and devoted themselves to the daily lives and emotions of the crowd. In addition, both empirical consideration and calligraphy were utilized to increase reliability. These attempts are meaningful in that they have achieved the achievement of forming contemporary empathy.

Deletion-Based Sentence Compression Using Sentence Scoring Reflecting Linguistic Information (언어 정보가 반영된 문장 점수를 활용하는 삭제 기반 문장 압축)

  • Lee, Jun-Beom;Kim, So-Eon;Park, Seong-Bae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.3
    • /
    • pp.125-132
    • /
    • 2022
  • Sentence compression is a natural language processing task that generates concise sentences that preserves the important meaning of the original sentence. For grammatically appropriate sentence compression, early studies utilized human-defined linguistic rules. Furthermore, while the sequence-to-sequence models perform well on various natural language processing tasks, such as machine translation, there have been studies that utilize it for sentence compression. However, for the linguistic rule-based studies, all rules have to be defined by human, and for the sequence-to-sequence model based studies require a large amount of parallel data for model training. In order to address these challenges, Deleter, a sentence compression model that leverages a pre-trained language model BERT, is proposed. Because the Deleter utilizes perplexity based score computed over BERT to compress sentences, any linguistic rules and parallel dataset is not required for sentence compression. However, because Deleter compresses sentences only considering perplexity, it does not compress sentences by reflecting the linguistic information of the words in the sentences. Furthermore, since the dataset used for pre-learning BERT are far from compressed sentences, there is a problem that this can lad to incorrect sentence compression. In order to address these problems, this paper proposes a method to quantify the importance of linguistic information and reflect it in perplexity-based sentence scoring. Furthermore, by fine-tuning BERT with a corpus of news articles that often contain proper nouns and often omit the unnecessary modifiers, we allow BERT to measure the perplexity appropriate for sentence compression. The evaluations on the English and Korean dataset confirm that the sentence compression performance of sentence-scoring based models can be improved by utilizing the proposed method.

A Topic Modeling Approach to the Analysis of Seniors' Happiness and Unhappiness in Korea (토픽 모델링 기반 한국 노인의 행복과 불행 이슈 분석)

  • Dong ji Moon;Dine Yon;Hee-Woong Kim
    • Information Systems Review
    • /
    • v.20 no.2
    • /
    • pp.139-161
    • /
    • 2018
  • As Korea became one of the oldest countries in the world, successful aging emerged as an important issue to individuals as well as to society. This study aims to determine not only the Korean seniors' happiness and unhappiness factors but also the means to enhance their happiness and deal with unhappiness. We collected news articles related to the happiness and unhappiness of seniors with nine keywords based on Alderfer's ERG Theory. We then applied a topic modeling technique, Latent Dirichlet Allocation, to examine the main issues underlying the seniors' happiness and unhappiness. According to the analysis, we investigated the conditions of happiness and unhappiness by inspecting the topics based on each keyword. We also conducted a detailed analysis based on the main factors from topic modeling. We proposed specific ways to increase and overcome the happiness and unhappiness of seniors, respectively, in terms of government, corporate, family, and other social welfare organizations. This study indicates the major factors that affect the happiness and unhappiness of seniors. Specific methods to boost happiness and relief unhappiness are suggested from the additional analysis.

The Analysis of the Current Status of Medical Accidents and Disputes Researched in the Korean Web Sites (인터넷 사이트를 통해 살펴본 의료사고 및 의료분쟁의 현황에 관한 분석)

  • Cha, Yu-Rim;Kwon, Jeong-Seung;Choi, Jong-Hoon;Kim, Chong-Youl
    • Journal of Oral Medicine and Pain
    • /
    • v.31 no.4
    • /
    • pp.297-316
    • /
    • 2006
  • The increasing tendency of medical disputes is one of the remarkable social phenomena. Especially we must not overlook the phenomenon that production and circulation of information related to medical accidents is increasing rapidly through the internet. In this research, we evaluated the web sites which provide the information related to medical accidents using the keyword "medical accidents" in March 2006, and classified the 28 web sites according to the kinds of establishers. We also analyzed the contents of the sites, and checked and compared the current status of the web sites and problems that have to be improved. Finally, we suggested the possible solutions to prevent medical accidents. The detailed results were listed below. 1. Medical practitioners, general public, and lawyers were all familiar with and prefer the term "medical accidents" mainly. 2. In the number of sites searched by the keyword "medical accidents", lawyer had the most sites and medical practitioners had the least ones. 3. Many sites by general public and lawyers had their own medical record analysts but there was little professional analysts for dentistry. 4. General public were more interested in the prevention of medical accidents but the lawyers were more interested in the process after medical accidents. The sites by medical practitioners dealt with the least remedies of medical accidents, compared with other sites. 5. General public wanted the third party such as government intervention into the disputes including the medical dispute arbitration law or/and the establishment of independent medical dispute judgment institution. 6. In the comparison among the establishers of web sites, medical practitioners dealt with the least examples of medical accidents. 7. The suggestion of cases in counseling articles related to dental accidents were considered less importantly than the reality. 8. Whereas there were many articles about domestic cases related to the bloody dental treatment, in the open counseling articles the number of dental treatment regarding to non insurance treatment was large. 9. In comparing offered information of medical accidents based on the establishers, general public offered vocabularies, lawyers offered related laws and medical practitioners offered medical knowledge relatively. 10. They all cited the news pressed by the media to offer the current status of domestic medical accidents. Especially among the web sites by general public, NGOs provided the plentiful statistical data related to medical accidents. 11. The web sites that collect the medical accidents were only two. As a result of our research, we found out that, in the flood of information, medical disputes can be occurred by the wrong information from third party, and the medical practitioners have the most passive attitudes on the medical accidents. Thus, it is crucial to have the mutual interchange and exchange of information between lawyer, patients and medical practitioners, so that based on clear mutual comprehension we can solve the accidents and disputes more positively and actively.

Rhetorical Analysis of News Editorials on 'Screen Quota' Arguments: An Application of Toulmin's Argumentation Model (언론의 개방담론 논증구조 분석: 스크린쿼터제 관련 의견보도에 대한 Toulmin의 논증모델과 Stock Issue의 적용)

  • Park, Sung-Hee
    • Korean journal of communication and information
    • /
    • v.36
    • /
    • pp.399-422
    • /
    • 2006
  • Whether to reduce the current 'screen quota' for domestic films in conjunction with the FTA discussions between Korea and the United States is one of the hotly debated issues in Korea. Using Toulmin's Argumentation Model, this study attempts to trace the use of data and warrants for each pro and con claims as portrayed in newspaper editorial columns and to find its rhetorical significance. A total of 67 editorial columns were collected from 9 nationwide news dailies in Korea for the purpose. The rhetorical analysis of those articles showed that the major warrants used in each pro and con opinion were absent of the potential issues of the opponents, which inherently fails to invite rebuttals from the opposite sides. This conceptual wall in each argumentation models implies an inactive conversation and subsequent absence of clash between the pro and con argumentation fields. It is thus suggested for opinion writers to find more adequate evidences to support the data and warrants to hold persuasive power of their respective claims, ultimately to enhance the public discourse among citizens.

  • PDF

Development of Information Extraction System from Multi Source Unstructured Documents for Knowledge Base Expansion (지식베이스 확장을 위한 멀티소스 비정형 문서에서의 정보 추출 시스템의 개발)

  • Choi, Hyunseung;Kim, Mintae;Kim, Wooju;Shin, Dongwook;Lee, Yong Hun
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.111-136
    • /
    • 2018
  • In this paper, we propose a methodology to extract answer information about queries from various types of unstructured documents collected from multi-sources existing on web in order to expand knowledge base. The proposed methodology is divided into the following steps. 1) Collect relevant documents from Wikipedia, Naver encyclopedia, and Naver news sources for "subject-predicate" separated queries and classify the proper documents. 2) Determine whether the sentence is suitable for extracting information and derive the confidence. 3) Based on the predicate feature, extract the information in the proper sentence and derive the overall confidence of the information extraction result. In order to evaluate the performance of the information extraction system, we selected 400 queries from the artificial intelligence speaker of SK-Telecom. Compared with the baseline model, it is confirmed that it shows higher performance index than the existing model. The contribution of this study is that we develop a sequence tagging model based on bi-directional LSTM-CRF using the predicate feature of the query, with this we developed a robust model that can maintain high recall performance even in various types of unstructured documents collected from multiple sources. The problem of information extraction for knowledge base extension should take into account heterogeneous characteristics of source-specific document types. The proposed methodology proved to extract information effectively from various types of unstructured documents compared to the baseline model. There is a limitation in previous research that the performance is poor when extracting information about the document type that is different from the training data. In addition, this study can prevent unnecessary information extraction attempts from the documents that do not include the answer information through the process for predicting the suitability of information extraction of documents and sentences before the information extraction step. It is meaningful that we provided a method that precision performance can be maintained even in actual web environment. The information extraction problem for the knowledge base expansion has the characteristic that it can not guarantee whether the document includes the correct answer because it is aimed at the unstructured document existing in the real web. When the question answering is performed on a real web, previous machine reading comprehension studies has a limitation that it shows a low level of precision because it frequently attempts to extract an answer even in a document in which there is no correct answer. The policy that predicts the suitability of document and sentence information extraction is meaningful in that it contributes to maintaining the performance of information extraction even in real web environment. The limitations of this study and future research directions are as follows. First, it is a problem related to data preprocessing. In this study, the unit of knowledge extraction is classified through the morphological analysis based on the open source Konlpy python package, and the information extraction result can be improperly performed because morphological analysis is not performed properly. To enhance the performance of information extraction results, it is necessary to develop an advanced morpheme analyzer. Second, it is a problem of entity ambiguity. The information extraction system of this study can not distinguish the same name that has different intention. If several people with the same name appear in the news, the system may not extract information about the intended query. In future research, it is necessary to take measures to identify the person with the same name. Third, it is a problem of evaluation query data. In this study, we selected 400 of user queries collected from SK Telecom 's interactive artificial intelligent speaker to evaluate the performance of the information extraction system. n this study, we developed evaluation data set using 800 documents (400 questions * 7 articles per question (1 Wikipedia, 3 Naver encyclopedia, 3 Naver news) by judging whether a correct answer is included or not. To ensure the external validity of the study, it is desirable to use more queries to determine the performance of the system. This is a costly activity that must be done manually. Future research needs to evaluate the system for more queries. It is also necessary to develop a Korean benchmark data set of information extraction system for queries from multi-source web documents to build an environment that can evaluate the results more objectively.

A New Approach to Automatic Keyword Generation Using Inverse Vector Space Model (키워드 자동 생성에 대한 새로운 접근법: 역 벡터공간모델을 이용한 키워드 할당 방법)

  • Cho, Won-Chin;Rho, Sang-Kyu;Yun, Ji-Young Agnes;Park, Jin-Soo
    • Asia pacific journal of information systems
    • /
    • v.21 no.1
    • /
    • pp.103-122
    • /
    • 2011
  • Recently, numerous documents have been made available electronically. Internet search engines and digital libraries commonly return query results containing hundreds or even thousands of documents. In this situation, it is virtually impossible for users to examine complete documents to determine whether they might be useful for them. For this reason, some on-line documents are accompanied by a list of keywords specified by the authors in an effort to guide the users by facilitating the filtering process. In this way, a set of keywords is often considered a condensed version of the whole document and therefore plays an important role for document retrieval, Web page retrieval, document clustering, summarization, text mining, and so on. Since many academic journals ask the authors to provide a list of five or six keywords on the first page of an article, keywords are most familiar in the context of journal articles. However, many other types of documents could not benefit from the use of keywords, including Web pages, email messages, news reports, magazine articles, and business papers. Although the potential benefit is large, the implementation itself is the obstacle; manually assigning keywords to all documents is a daunting task, or even impractical in that it is extremely tedious and time-consuming requiring a certain level of domain knowledge. Therefore, it is highly desirable to automate the keyword generation process. There are mainly two approaches to achieving this aim: keyword assignment approach and keyword extraction approach. Both approaches use machine learning methods and require, for training purposes, a set of documents with keywords already attached. In the former approach, there is a given set of vocabulary, and the aim is to match them to the texts. In other words, the keywords assignment approach seeks to select the words from a controlled vocabulary that best describes a document. Although this approach is domain dependent and is not easy to transfer and expand, it can generate implicit keywords that do not appear in a document. On the other hand, in the latter approach, the aim is to extract keywords with respect to their relevance in the text without prior vocabulary. In this approach, automatic keyword generation is treated as a classification task, and keywords are commonly extracted based on supervised learning techniques. Thus, keyword extraction algorithms classify candidate keywords in a document into positive or negative examples. Several systems such as Extractor and Kea were developed using keyword extraction approach. Most indicative words in a document are selected as keywords for that document and as a result, keywords extraction is limited to terms that appear in the document. Therefore, keywords extraction cannot generate implicit keywords that are not included in a document. According to the experiment results of Turney, about 64% to 90% of keywords assigned by the authors can be found in the full text of an article. Inversely, it also means that 10% to 36% of the keywords assigned by the authors do not appear in the article, which cannot be generated through keyword extraction algorithms. Our preliminary experiment result also shows that 37% of keywords assigned by the authors are not included in the full text. This is the reason why we have decided to adopt the keyword assignment approach. In this paper, we propose a new approach for automatic keyword assignment namely IVSM(Inverse Vector Space Model). The model is based on a vector space model. which is a conventional information retrieval model that represents documents and queries by vectors in a multidimensional space. IVSM generates an appropriate keyword set for a specific document by measuring the distance between the document and the keyword sets. The keyword assignment process of IVSM is as follows: (1) calculating the vector length of each keyword set based on each keyword weight; (2) preprocessing and parsing a target document that does not have keywords; (3) calculating the vector length of the target document based on the term frequency; (4) measuring the cosine similarity between each keyword set and the target document; and (5) generating keywords that have high similarity scores. Two keyword generation systems were implemented applying IVSM: IVSM system for Web-based community service and stand-alone IVSM system. Firstly, the IVSM system is implemented in a community service for sharing knowledge and opinions on current trends such as fashion, movies, social problems, and health information. The stand-alone IVSM system is dedicated to generating keywords for academic papers, and, indeed, it has been tested through a number of academic papers including those published by the Korean Association of Shipping and Logistics, the Korea Research Academy of Distribution Information, the Korea Logistics Society, the Korea Logistics Research Association, and the Korea Port Economic Association. We measured the performance of IVSM by the number of matches between the IVSM-generated keywords and the author-assigned keywords. According to our experiment, the precisions of IVSM applied to Web-based community service and academic journals were 0.75 and 0.71, respectively. The performance of both systems is much better than that of baseline systems that generate keywords based on simple probability. Also, IVSM shows comparable performance to Extractor that is a representative system of keyword extraction approach developed by Turney. As electronic documents increase, we expect that IVSM proposed in this paper can be applied to many electronic documents in Web-based community and digital library.