• Title/Summary/Keyword: Korean granite

Search Result 1,554, Processing Time 0.039 seconds

Shear Characteristics of Weathered Granite Soils for Degree of Weathering and Saturation (화강토의 풍화도와 포화도에 따른 전단특성)

  • Song, Chang-Seob;Jang, Wong-Hee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.3
    • /
    • pp.1-7
    • /
    • 2000
  • The aim of the work described in this paper is to study the shear characteristics of the weathered granite soil. To this end, a series of consolidated undrained triaxial compression tests are carried out to investigate the shear parameters-cohesion and internal friction angle for the degree of saturation and degree of weathering. From the results, it is found that the shear parameters of weathered granite soil are influenced on the degree of saturation, degree of weathering and disturbance. Especially, internal friction angle is more influenced on the upper factors than cohesion. And shear parameters are more acted on the degree of saturation than the degree of weathering in the test range. It is, therefore, recommended that must be considered the conditions of granite soil-degree of saturation, degree of weathering and disturbance etc-in case of the calculation of bearing capacity, stability analysis and other designs with shear parameters.

  • PDF

Petrologic Study on the so-called Schistose Granites in the northeastern part of the Kwangju (광주(光州) 북동부(北東部)에 분포(分布)하는 소위(所謂) 편상화강암(片狀花崗岩)에 관(關)한 암석학적(岩石學的) 연구(硏究))

  • Kim, Jeong Bin;Kim, Yong Jun
    • Economic and Environmental Geology
    • /
    • v.17 no.3
    • /
    • pp.197-214
    • /
    • 1984
  • This studg is to clarify intrusion sequence and petrogenetic processes of the so-called schistose granites in the northeastheastern part of the Kwangju, Chonnam Province. The study area is composed of the Pre-cambrian and Unknown age metasediments, the Unknown age schistose granites and basic plutons, the Cretaceous sedimentary and volcanic rocks, and the Cretaceous Ogang-ri granite and dykes. The schistose granites of the study area is divided into three rock units based on relative intrusion age, mineralogical constituent and texture;SoonChang schistose granite, two mica granite and Sam-o-ri schistose granite. The schistose granites intruded into metasediments, are intruded by Ogang-ri granite and dikes, and overlain by the Cretaceous sedimentary and volcanic rocks. The schistose granites vary widely in composition (granite-granodiorite-tonalite) and content of porphyroblastic feldspar Caugen and rectangular shaped). The foliation of schistose granites shows similar trend to the Shinian direction. In especially, strong foliation reflects dynamic metamorphism by mortar texture and much content of well oriented biotite. These schistose granites are characterized by its gray feldspar porphyroblasts. This feldspar is considered to be formed by potassic metasomatism and assimilation of pelitic metasediments of unexposed highly metamorphosed rocks deeply buried under the level of the schistose granites emplacement. Variation of silica versus oxides of major elements shows that the schistose granites are similar to the trend of Daly's average basalt-andesite-dacite-rhyolite which shows the trend of the fractional crystallization of magma. AMF diagram shows that the schistose granite is corresponded to contaminated differentiation products such as Lower California batholith and Cascade lava. These evidence suggest that the schistose granite is a series of differentiation products formed by fractional crystallization that associated with srtongly contamination and potassic metasomatism.

  • PDF

Intrusive Phases and Igneous Pricesses in the Yeongju Batholith (영주저반의 관입상과 화성과정)

  • 황상구
    • Economic and Environmental Geology
    • /
    • v.32 no.6
    • /
    • pp.669-688
    • /
    • 1999
  • The Yeongju granitoid batholith is a plutonic complex of huge area (1180km2) intruding the metamorphic rocks of the Yeongnam massif. The batholith, which is divided into fivelithofacies, consists of three separate plutons. The oldest Buseok pluton comprises four lithofacies: hornblende biotite tonalite, porphyrotoc biotite granodiorite, equigranular biotite grandiorite and biotite granite. The middle Chunyang pluton has been called as Chunyang granite that ranges in compostion from granodiorite to granite. The youngest Jangsu pluton is intrusions that has lithofacies of two mica granite. The contact between Buseok pluton and the rest two plutons shows obvious intrusive relations, but relation between the Chunyang and the Jangsu pluton is far away, so gives no indication of relative ages. Changes in nextures and micristructures, as well as in the mineral contents, take place between rock types og the plutons. only the Buseok pluton shows faliations of two type: magmatic foliation and regional mylonal foliation. K-Ar age deteminations fall into 171.7$\pm$3.2~162.3$\pm$3.1 Ma in the Buseok pluton, 153.9$\pm$2.9 Ma in the Chunyang pluton and 145.3$\pm$2.7 Ma in the jangsu Pluton. The batholith presents three separate intrusive phases which range in composition from tonalite to granite to granite. Each intrusive phase apperars to have been intruded in a pulse from an underlying, differentiating magma. The petrochemical data showthat three plutons are within the diagnostic range for continental arc orogenic tectonic setting, whereas Jangsu pluton approaches postorogenic setting. The data suggest that three plutons are calc-aclkalline series, and that temporal compositional variations change progerssively from tonalite through grandiorite to granite between the intrusive phases. so we consider that the magmas for all the phases were probably derived from a differentiation by fractional crystallization of a parental magma. The tonalite magma of the Buseok phase was tapped was tapped from a chamber deep in the crust, and then would have to rise at a rapid rate to its final level of emplacement. The tonalite magma in the chamber was gradually enolved through granodiorite magma into granite magma by fractional crystallization. The magmas of the younger phases were respectively tapped with temporal interval from a evolved magma of the chamber that rose into a shallower lever in the crust, and rose to their present level of emplacement.

  • PDF

Evaluation of Granite Melting Technique for Deep Borehole Sealing (심부시추공 밀봉을 위한 화강암 용융거동 평가)

  • Lee, Minsoo;Lee, Jongyoul;Ji, Sung-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.4
    • /
    • pp.479-490
    • /
    • 2018
  • The granite melting concept, which was suggested by Gibb's group for the closing of a deep borehole, was experimentally checked for KURT granite. The granite melting experiments were performed in two pressure conditions of atmospheric melting with certain inorganic additives and high pressure melting formed by water vaporization. The results of atmospheric tests showed that KURT granite started to melt at a lower temperature of $1,000^{\circ}C$ with NaOH addition and that needle shaped crystals were formed around partially melted crystals. In high pressure tests, vapor pressure was increased by adding water with maximum pressure of about 400 bars. KURT granite was partially melted at $1,000^{\circ}C$ when vapor pressure was low. However, it was not melted at vapor pressures higher than 200 bars. Therefore, it was determined that high pressure with a small amount of water vapor more effectively decreased the melting point of granite. Meanwhile, high temperature and high pressure vapor caused severe corrosion of the reactor wall.

Influence of Ca-Na-Cl physicochemical solution properties on the adsorption of Se(-II) onto granite and MX-80 bentonite

  • Joshua Racette ;Andrew Walker ;Shinya Nagasaki ;Tianxiao Tammy Yang ;Takumi Saito ;Peter Vilks
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3831-3843
    • /
    • 2023
  • The adsorption behaviour of Se(-II) onto granite and MX-80 bentonite in Ca-Na-Cl solutions has been studied utilizing adsorption experiments and surface complexation modelling. Adsorption kinetic experiments allude to steady-state adsorption periods after 7 days for granite and 14 days for MX-80 bentonite. Batch adsorption experiments were carried out to determine the influence that the physicochemical solution properties would have on Se(-II) adsorption behaviour. Adsorption of Se(-II) onto granite and MX-80 bentonite follows the trend of anionic adsorption, with a decrease in Rd values as the solution pH increased. There is also an ionic strength influence on the adsorption of Se(-II) onto granite with a decrease in the Rd value as the ionic strength increased. This effect is not found when observing Se(-II) adsorption onto MX-80 bentonite. Final experiments with a representative groundwater, determined that the adsorption of Se(-II) onto granite and MX-80 bentonite returned Rd values of (1.80 ± 0.10) m3·kg-1 and (0.47 ± 0.38) m3·kg-1, respectively. In support of the experiments, a surface complexation modelling approach has been employed to simulate the adsorption of Se(-II) onto granite and MX-80 bentonite, where it was determined that two different surface complexes, ≡S_Se- and ≡SOH2+_H2 were capable of simulating Se(-II) adsorption behaviour.

Uranium and Radon Concentrations in Groundwater of the Daejeon Granite Area: Comparison with Other Granite Areas (대전 화강암지역 지하수의 우라늄과 라돈 함량: 다른 화강암지역과의 비교)

  • Yun, Uk;Kim, Moon Su;Jeong, Do Hwan;Hwang, Jae Hong;Cho, Byong Wook
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.631-643
    • /
    • 2018
  • Uranium and radon concentrations in groundwater from 80 wells from Daejeon area were measured to determine the range of concentrations according to the geology. The median uranium content of groundwater was $11.14{\mu}g/L$ for the two-mica granite, $0.90{\mu}g/L$ for the biotite granite, and $0.47{\mu}g/L$ for the Ogcheon group. The median radon content of groundwates was 114.3 Bq/L for the two-mica granite, 61.6 Bq/L for the biotite granite, and 42.2 Bq/L for the Ogchon group, respectively. The uranium content of two-mica granite is 3.78 mg/ kg, which is slightly higher than that of biotite granite 3.20 mg/kg. However, the uranium content in groundwatewr of two-mica granite groundwater is much higher than that of biotite granite. This can be explained by the fact that the two-mica granite is vulnerable to weathering than biotite granite, so uranium in mineral is easily leached into groundwater. The exceeding rate of samples having uranium content above $30{\mu}g/L$ in granite area was 23.8%, which is higher than that of 6.7% in Jurassic granite in Korea. On the other hand, the exceeding rate of samples having radon content above 148 Bq/L in granite rate area was 31.0% which is similar to that of Jurassic granite area of 31.7%.

Occurrence of U-minerals and Source of U in Groundwater in Daebo Granite, Daejeon Area (대전지역 대보 화강암내 우라늄 광물의 산출상태와 지하수내 우라늄의 기원)

  • Hwang, Jeong
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.399-407
    • /
    • 2013
  • Some groundwater in Korea contains high U concentrations, especially where two-mica granite occurs in the Daejeon area. The elemental U in the two-mica granite is lower than that in normal granites elsewhere in the world, and U-minerals have yet to be reported in the two-mica granite in the Daejeon area. This study focuses on investigating the occurrence of U-minerals serving as the U source in groundwater. In situ gamma ray spectrometry and mineralogical analyses using EPMA were performed. U-count anomalies were identified in a granitic dyke and in hydrothermally altered granite. Uraniferous granitic dykes occur along the contact zone between the two-mica granite and mica-schist. The uraniferous parts within the two-mica granite are developed in the hydrothermally altered zone, which contains numerous quartz veinlets within a fracture zone. Hydrothermal alteration is dominated by potassic and prophylitic alteration. Uraninite is a common U-mineral in granitic dykes and hydrothermally altered granite. Coffinite and uranophane occur in the hydrothermally altered granite. All of these U-minerals are commonly accompanied by hydrothermal alteration minerals such as muscovite, chlorite, epidote, and calcite. It is concluded that granitic dyke and hydrothermally altered granite are the main source rocks of U in groundwater.

A Geochemical Study on Ulsan Granite in Relation to Iron Ore Deposits in the Gyeongsang Basin (경상분지내 철광상 관련 울산화강암에 대한 지화학적 연구)

  • Lee, Jae Yeong;Kim, Sang Wook;Kim, Young Ki
    • Economic and Environmental Geology
    • /
    • v.25 no.2
    • /
    • pp.133-143
    • /
    • 1992
  • Ulsan granite is plotted mainly in the region of syeno-granite of the Streckeisen diagram, which consists with those of iron related granites in the area of Kimhae-Mulgum, while Chindong granites and Yucheon-Eonyang granites are plotted in the regions of granodiorite-diorite and monzo-granite, respectively. These granites show a differentiation trend of calc-alkaline magma, and their magmatic evolution from intermediate to acidic rocks is consistant with the general crystallization path of the Cretaceous granitic rocks in the Gyeongsang basin. The difference index (D.I.) is 70~90 for Ulsan granite, which lies between 35~80 of Chindong granites and 85~95 of Yucheon-Eonyang granites. These granites are distinguishable from each other by variation patterns of chemical elements. For instance, there is clear difference in content of some major and trace elements between Ulsan granite and Cu-related Chindong granites: Ulsan granite has high content of K (2.68%) and Ba (636 ppm), and low content of Ca (1.07%), Mg (0.50%) and Sr (185 ppm), whereas Chindong granites has less content of K (1.62%) and Ba (382 ppm), and higher content of Ca (3.75%), Mg (1.42%) and Sr (405 ppm). However, the content of Ulsan granite overlaps partly those of Yucheon-Eonyang granites, which are apparently dividable from Chindong granites. There is an usual trend that Cu content is high in Chindong granites of Cu province and Zn content is higher in Yucheon-Eonyang granites of Pb-Zn province. But it is unusual that Cu and Zn are higher in Ulsan granite (34 ppm, 74 ppm) than in Chindong granites (15 ppm, 22 ppm) and Yucheon-Eonyang granites (14 ppm, 43 ppm). This may be due to the reason that Ulsan granite is productive and Cu-Zn minerals are associated with iron ores. Productive Chindong granites in Haman-Gunbug area and Yuchon-Eonyang granites near ore deposits have higher content of Cu and Zn than Ulsang granite. Therefore, it is expected that chemical variation patterns of granites are applicable to distinguish mineral commodity of ore deposits (iron, copper, or lead-zinc) related with the granites in the Gyeongsasng basin.

  • PDF