• Title/Summary/Keyword: Korean coastal sediments

Search Result 388, Processing Time 0.021 seconds

Heavy Metal Contamination and Spatial Differences in Redox Condition of the Artificial Shihwa lake, Korea (시화호의 중금속 오염과 산화-환원 상태의 공간적 차이)

  • Hyeon, Sang-Min;Kim, Eun-Su;Paeng, U-Hyeon
    • Journal of Environmental Science International
    • /
    • v.13 no.5
    • /
    • pp.479-488
    • /
    • 2004
  • Five sediment cores from the tidal flat of artificial Lake Shihwa are analyzed in terms of sedimentology and geochemistry to evaluate the heavy metal contamination and redox condition of surficial sediment following the Shihwa seawall construction. The variability of concentrations of various elements depends on the depositional environment, and reflects the various redox conditions and sediment provenances. The amounts of Ti and Al and their ratio of Ti/ Al with respect to Li clearly indicate that there is an anthropogenic contribution to the surficial sediment. The high concentrations of heavy metals suggest an anthropogenic contribution at ST. 34 and ST. 22. Concentrations of most elements (Cr, Cu, Zn and Pb) are higher near the Shihwa-Banwol industrial complex than in the central part of Lake Shihwa. Concentrations of heavy metal in surficial sediment near the Shihwa-Banwol industrial complex are two to eight times higher than in the center of Lake Shihwa. Enrichment factors (EF), which are normalized by the unpolluted shale, suggests a significant metallic contamination near the Shihwa-Banwol industrial complex (SBIC). The redox condition is divided into two anoxic and mixed oxi $c_oxic zones based on the carbon:sulfur (C/S) ratios of organic matter and elemental relationships. Correlations among geochemical elements Mn, U and Mo are significantly different from site to site, and may therefore be an indicator of the spatial redox condition. Controlling factors for switching anoxic/oxic conditions are thought to be water depth and the differences in industrial effluent supply. The variations of the Cu/Mn ratio in the sediments confirms above mentioned spatial differences of a redox condition in part, and therefore shows a location-dependence redox condition in sediments at four other sites. The redox condition of the surficial sediment characteristics of the Shihwa Lake are controlled by its geographic location and water depth.th.

Pollution of Polycyclic Aromatic Hydrocarbons (PAHs) in Seawater and Marine Sediments from Anmyundo Coastal Area after Oil Spill (유류사고 이후 안면도 연안 해수 및 퇴적물의 다환방향족탄화수소(PAHs) 오염에 관한 연구)

  • Lee, Wan-Seok;Park, Seung-Yoon;Kim, Pyoung-Joong;Jeon, Sang-Baeck;An, Kyoung-Ho;Choi, Yong-Seok
    • Journal of Environmental Science International
    • /
    • v.19 no.12
    • /
    • pp.1421-1430
    • /
    • 2010
  • Polycyclic aromatic hydrocarbons (PAHs) were investigated in seawater and marine sediment from Anmyundo coastal area after oil spill. The concentrations of total PAHs in surface and bottom of seawater at August were 31.1 to 142.6 ng/L and 5.9 to 50.9 ng/L in August and November, respectively. The concentrations of PAHs in sediment were 21.0 to 102.9 ng/g D.W. and 32.3 to 57.4 ng/g D.W. in August and November, respectively. PAHs concentrations in seawater and sediment in August were higher than those in November about 2.5 and 1.4 times, respectively. Diagnostic ratio (PhA/AnT and FluA/Pyr) were investigated to identify source of PAHs in seawater and sediment. The PAHs in seawater originated from pyrolytic source and those in sediment originated from pyrolytic and petrogenic source. The glass, wood and coal origin was higher than petroleum origin on the combustion origin of PAHs in seawater and sediment. The seawater of Anmyundo costal area recovered from oil spill, but the sediments of that were weakly influenced by oil spill until now. Because this area is developed many fishing grounds, demanded Long Term Environmental Monitoring Program (LTEMP). The concentrations of PAHs on depth of sediments were investigated at station 8 and 10. The concentrations of PAHs were decreased with increasing depth.

Heavy Metal Concentrations of Marine Surface Sediments and Benthic Foraminifera in Southern and Southwestern Coastal Areas of Korea (국내 남해 및 남서해안지역 해양퇴적물과 저서성 유공충 골격내 중금속함량)

  • Kim, Kyoung-Woong;Yun, Hye Su;Yi, Song Suk;Jung, Kyu-Kui
    • Economic and Environmental Geology
    • /
    • v.30 no.3
    • /
    • pp.223-230
    • /
    • 1997
  • The skeletal chemistry of calcareous microfossils may contribute to the classification of various biological processes and be used as an environmental indicator for future pollution. In order to examine the degree of heavy metal pollutions in marine environments, samples of sediment and benthonic foraminifera were taken from 5 study areas from 3 different stations in coastal offshore regions of Korea. After sieving, cleaning and acid digestion, sample were analyzed for heavy metals by ICP-MS, ICP-AES and AAS. Concentrations of Cd, Cu, Pb and Zn in most of marine sediments from 5 study areas are not higher than those in sediments from unpolluted marine environment in the U.K.. However, pollution indices are up to 0.96~0.99 in the Gwangyang and Yulchon areas which are classified as the special control distric along the coast for pollution. The pollution indices decrease in order of Yulchon > Gwangyang > Mokpo > Gamak = Yoja > Yonggwang areas. Concentrations of Mg, Pb, Sr and Zn in Ammonia beccarii Pseudorotalia gaimardii, Quinqueloculina lamarckiana are reduced after pre-treatment of samples. From the result of bioconcentration index, Mg is easily accumulated in microfossils and Quinqueloculina lamarckiana may be used as the best indicator for future pollution.

  • PDF

Application of Granulated Coal Ash for Remediation of Coastal Sediment (연안 저질 개선을 위한 석탄회 조립물의 활용)

  • Kim, Kyunghoi;Lee, In-Cheol;Ryu, Sung-Hoon;Saito, Tadashi;Hibino, Tadashi
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • This paper aims to explain the safety assessment and remediation mechanism of Granulated Coal Ash (GCA) as a material for the remediation of coastal sediments and to evaluate the improvement of the sediment in Kaita Bay, where GCA was applied. The concentrations of heavy metal contained in GCA and the dissolved amounts of heavy metal from GCA satisfied the criteria for soil and water pollution in Japan. The mechanisms on the remediation of coastal sediments using GCA is summarized as follows; (1) removal of phosphate and hydrogen sulfide (2) neutralization of acidic sediment (3) oxidation of reductive sediment (4) increase of water permeability (5) increase of soil strength (6) material for a base of seagrass. From the results obtained from the field experiment carried out in Kaita Bay, it was clarified that GCA is a promizing material for remediation of coastal sediment. This remediation technology can contribute to promote waste reduction in society and to decrease cost of coastal sediment remediation by applying GCA in other polluted coastal areas.

The distribution characteristics of Sb and As in the surface sediment from the Yellow Sea and the coastal areas of Korea (황해와 한국연안해역 표층퇴적물중 Sb과 As의 농도분포특성)

  • ;Jingyun Han
    • Journal of Environmental Science International
    • /
    • v.12 no.10
    • /
    • pp.1121-1129
    • /
    • 2003
  • We report the distributions of Sb and As in the surface sediment of the Yellow Sea and the coastal areas of Korea. The mean concentrations of Sb and As range from 0.68 ppm to 1.01 ppm and from 7.4 ppm to 15.8 ppm, respectively, and show relatively the high concentrations at the coast of Weolseong in the East Sea for Sb and at the coast of Gadeok Island in the South Sea far As. This may be due to the anthropogenic input of these elements via river and atmosphere from industry complex and agriculture regions around the study areas. Because of the difference of clay to silt proportion, the correlation between silt plus clay contents and Sb, As in the coastal surface sediment of Korea is not shown, the concentrations of Sb and As vary widely for the sample in which the silt plus clay contents are the same. Therefore, we suggest that the distribution patterns of Sb and As in surface sediment of the Yellow Sea and the coastal areas of Korea are mainly controlled by the anthropogenic inputs and the sediment characteristics. On the other hand, the Sb concentrations are lower than those of the lowest effect level which is the standard of judgment for contamination, while the As concentrations are higher than those of the lowest effect level. This implies that the surface sediments of the Yellow Sea and the coastal areas of Korea are considerably contaminated for As.

Distribution of Methyl Mercury in Sediments from Kyeonggi Bay, Namyang Bay, Chinhae Bay, and Lake Shihwa, Korea

  • Lee, Kyu-Tae;Kannan, Kurunthachalam;Shim, Won-Joon;Koh, Chul-Hwan
    • Journal of the korean society of oceanography
    • /
    • v.33 no.4
    • /
    • pp.178-184
    • /
    • 1998
  • To elucidate contamination levels and distribution of methyl mercury (Me-Hg) in Korean coastal areas, 126 sediment samples were collected from Kyeonggi Bay, Namyang Bay, Chinhae Bay, and Lake Shihwa during 1995-1996, and the Me-Hg concentrations were determined by cold vapor atomic fluorescence spectrometry (CVAFS). Contamination levels of Me-Hg in sediments from Kyeonggi Bay, Namyang Bay, Chinhae Bay, and Lake Shihwa were 274 ${\pm}$ 990, 108 ${\pm}$ 24, 294 ${\pm}$ 342, and 1080 ${\pm}$ 760 pg/g, respectively. Concentrations of Me-Hg in sediments were significantly correlated with total organic carbon and sulfur contents, but were independent of mud contents and mean grain size. The highest concentration of Me-Hg (7100 pg/g) was observed at Incheon North Harbor (Site Kl9) in Kyeonggi Bay. This Me-Hg concentration was one or two orders of magnitude higher than those in other Kyeonggi Bay sediments were. The average concentration of Me-Hg in sediments from Lake Shihwa was higher than in those from other study areas. The three peaks of Me-Hg concentrations were observed on three sites (55, 56,and 510) in Lake Shihwa and gradually decreased in distance-dependent manner around these sites. High concentrations of Me-Hg at surface and 10-cm sediment depth in Chinhae Bay maybe due to higher rates of methylation process by active sulfate-reducing bacteria or higher concentrations of total mercury available to sulfate-reducing bacteria.

  • PDF

Heavy Metals in Sediments and Organisms from Tidal Flats along the Mokpo Coastal Area (목포연안 갯벌 및 서식생물에서의 중금속 함량)

  • 나춘기
    • Economic and Environmental Geology
    • /
    • v.37 no.3
    • /
    • pp.335-345
    • /
    • 2004
  • Total and extractable contents of heavy metals were measured in sediment and seafood from Bukhang and Boggil-ri tidal flats along the Mokpo coastal area, south-western part of Korean peninsular in order to assess the degree of metal pollution, metal bioavailability and metal hioaccumulation. The metal concentrations, except Pb were found to be greater than the background concentrations of sediments indicating the progress of cumulative contamination by anthropogenic origin of metals. The order of extractable metal concentrations in sediments were Mn(32-53 mg/kg)>Zn(14-42 mg/tg)>Cu(2.5-17.0 mg/kg)>Pb(2.4-6.8 mg/kg)>Cd(0.5-0.7 mg/kg). However, the amount of metals associated with extractable fraction of sediments were significantly high in Bukhang relative to Boggil-ri. Significant bioaccumulation of all metals, except Pb were observed in seaweed and benthos. The order of bioaccumulation of metals were: in concentration; all biota commonly, Mn(129-374 mg/kg)>Zn(19-106 mg/kg)>Cu(6-87 mg/kg)>Cd(4.6-7.6 mg/kg)>Pb(0.2-3.7 mg/kg), in BCF; Enteromorpha, Cd>Mn>Cu>Zn>Pb, Ilyoplax deschampsi, Cu>Cd>Mn>Zn>Pb, Urechis unicinctus, Cd>Zn>Mn>Cu>Pb. Some metal concentrations of Enteromorpha, especially Cu, Zn, weakly Pb in bukhang, Mn, Cd in boggili-ri, were correlate well with concentrations in sediment, indicating relatively more contaminated by the anthropogenic origin of metals in each tidal flat. The results clearly indicate that the seafood of bukhang, even of Boggili-ri known as clean area, are contaminated with metals.

Distribution of Fecal Sterols and Nonylphenolic Compounds in Sediments from Busan Suyeong Estuary, Impacted by Wastewater Treatment Plant Effluents (하수처리장 방류수역에서 분변계스테롤과 노닐페놀류의 분포 특성)

  • Baek, Seung-Hong;Yoon, Sera;Lee, In-Seok;Hwang, Dong-Woon;Choi, Minkyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.6
    • /
    • pp.1006-1013
    • /
    • 2014
  • Wastewater organic compounds, that is, nonylphenolic compounds (NPs) and fecal sterols, were measured in surface sediments from Busan Suyeong Estuary, where two wastewater treatment plants (WWTPs) are located, to assess contamination from municipal effluents. The NPs analyzed were nonylphenol, and nonylphenol mono- and di-ethoxylates, all synthetic endocrine disruptors. The fecal sterols analyzed were coprostanol (COP), cholestanol, and epicoprostanol. Concentrations of NPs in the sediments ranged from 146 to 3,723 ng/g, and those of COP ranged from 366 to 13,018 ng/g. Their detection in all of the sediments analyzed indicates widespread pollution by municipal effluents. The highest concentrations of NPs and COP were detected at stations close to outfalls of WWTPs. Their levels in sediments are categorized in the higher range of those previously reported in Korean coastal areas. Moreover, in comparison with screening values of NPs in the Netherlands, Norway, and Canada, more than 50% of the sampling stations exceeded the guidelines. This indicates that the estuary may be adversely influenced by municipal effluents.

Evolution of suspended sediment patterns in the East China and Yellow Seas

  • Ahn, Yu-Hwan;Shanmugam, Palanisamy;Gallegosi, Sonia
    • Journal of the korean society of oceanography
    • /
    • v.39 no.1
    • /
    • pp.26-34
    • /
    • 2004
  • The evolution of intricate and striking patterns of suspended sediments (SS), which are created by certain physical dynamics in the East China and Yellow Seas, has been investigated using satellite ocean color imageries and vertical profiles of particle attenuation and backscattering coefficients. The structure of these patterns can reveal a great deal about the process underlying their formation. Sea surface temperature (SST) analyzed from the Advanced Very High Resolution Radiometer (AVHRR) thermal infrared data were used to elucidate the physical factors responsible for the evolution of suspended sediment patterns in the East China Sea. The concomitant patterns of suspended sediments were tracked from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color data. The detailed examination about these patterns gave birth to the definition of the evolution of suspended sediments (SS) into four stages: (1) Youth or Infant stage, (2) Younger stage, (3) Mature stage, and (4) Old stage. We describe about the three directional forces of the tidal currents, ocean warm currents and estuarine circulations that lead to occurrence of various stages of the evolution of suspended sediments that increase turbidity at high levels through out the water column of the inner and outer shelf areas during September to April. The occurrence of these four stages could be repeatedly observed. In contrast, vertical profiles of the particle attenuation ($c_{p}$) and backscattering ($b_{bp}$) coefficients displayed obvious patterns of the propagation of suspended sediment plume from the southwestern coastal sea that leads to eventual collision with the massive sediment plume originating from the Yangtze banks of the East China Sea.

Numerical Simulations for Dispersion of the Suspended Sediments Near Daesan Coastal Areas (대산항 해역의 부유사 확산 수치모사)

  • Kim, Jin-Hyuk;Park, Gun-Hyung;Kim, Ki-Chul;Suh, Kyung-Suk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.1
    • /
    • pp.16-24
    • /
    • 2011
  • EFDC model was applied to reproduce velocity fields and to evaluate the dispersion characteristics of suspended sediments (SS) around a Daesan port. Numerical results using two-dimensional hydrodynamic model of EFDC showed good agreements through comparison with the time series and harmonic analysis of the tidal elevations. The dispersion patterns of the suspended sediments using the calculated velocity fields were calculated to move from east to northeast direction in flood tide and from west to southwest in ebb tide for dredging of sea route, respectively. Also, the suspended sediments were widely dispersed into the front areas of a Daesan port, Nanji-do and Garorim bay in the long-term. Therefore, it was inferred that the environmental problems for sea pollution would be occurred seriously if the dredging for sea route would be continued in the long-term.