• Title/Summary/Keyword: Korean cheese

Search Result 574, Processing Time 0.027 seconds

Quantitative Analysis of Milk-Derived microRNAs and Microbiota during the Manufacturing and Ripening of Soft Cheese

  • Oh, Sangnam;Park, Mi-Ri;Ryu, Sangdon;Maburutse, Brighton E.;Kim, Ji-Uk;Kim, Younghoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.9
    • /
    • pp.1566-1575
    • /
    • 2017
  • MicroRNAs (miRNAs) are abundant in bovine milk and milk derived from other livestock, and they have functional roles in infants and in the secretion process of mammary glands. However, few studies have evaluated miRNAs in dairy processes, such as during cheese making and ripening. Thus, we investigated the characteristics of milk-derived miRNAs during the manufacturing and ripening of Camembert cheese as well as the microbiota present using the quantitative reverse transcription polymer chain reaction (RT-qPCR) and 16S rRNA pyrosequencing, respectively. Pyrosequencing showed that the cheese microbiota changed dramatically during cheese processing, including during the pasteurization, starter culture, and ripening stages. Our results indicated that the RNA contents per $200mg/200{\mu}l$ of the sample increased significantly during cheese-making and ripening. The inner cheese fractions had higher RNA contents than the surfaces after 12 and 22 days of ripening in a time-dependent manner (21.9 and 13.2 times higher in the inner and surface fractions than raw milk, respectively). We performed a comparative analysis of the miRNAs in each fraction by RT-qPCR. Large amounts of miRNAs (miR-93, miR-106a, miR-130, miR-155, miR-181a, and miR-223) correlated with immune responses and mammary glands were present in aged cheese, with the exception of miR-223, which was not present on the surface. Considerable amounts of miRNAs were also detected in whey, which is usually disposed of during the cheese-making process. Unexpectedly, there were no significant correlations between immune-related miRNAs and the microbial populations during cheese processing. Taken together, these results show that various functional miRNAs are present in cheese during its manufacture and that they are dramatically increased in amount in ripened Camembert cheese, with differences according to depth.

Physicochemical and Microbiological Characterization of Protected Designation of Origin Ezine Cheese: Assessment of Non-starter Lactic Acid Bacterial Diversity with Antimicrobial Activity

  • Uymaz, Basar;Akcelik, Nefise;Yuksel, Zerrin
    • Food Science of Animal Resources
    • /
    • v.39 no.5
    • /
    • pp.804-819
    • /
    • 2019
  • Ezine cheese is a non-starter and long-ripened cheese produced in the Mount of Ida region of Canakkale, Turkey, with a protected designation of origin status. Non-starter lactic acid bacteria (NSLAB) have a substantial effect on the quality and final sensorial characteristics of long-ripened cheeses. The dominance of NSLAB can be attributed to their high tolerance to the hostile environment in cheese during ripening relative to many other microbial groups and to its ability to inhibit undesired microorganisms. These qualities promote the microbiological stability of long-ripened cheeses. In this study, 144 samples were collected from three dairies during the ripening period of Ezine cheese. Physicochemical composition and NSLAB identification analyses were performed using both conventional and molecular methods. According to the results of a 16S rRNA gene sequence analysis, 13 different species belonging to seven genera were identified. Enterococcus faecium (38.42%) and E. faecalis (18.94%) were dominant species during the cheese manufacturing process, surviving 12 months of ripening together with Lactobacillus paracasei (13.68%) and Lb. plantarum (11.05%). The results indicate that NSLAB contributes to the microbiological stability of Ezine cheese over 12 months of ripening. The isolation of NSLAB with antimicrobial activity, potential bacteriocin producers, yielded defined collections of natural NSLAB isolates from Ezine cheese that can be used to generate specific starter cultures for the production of Ezine cheese (PDO).

Milk Fat Substitution by Microparticulated Protein in Reduced-fat Cheese Emulsion: The Effects on Stability, Microstructure, Rheological and Sensory Properties

  • Urgu, Muge;Turk, Aylin;Unluturk, Sevcan;Kaymak-Ertekin, Figen;Koca, Nurcan
    • Food Science of Animal Resources
    • /
    • v.39 no.1
    • /
    • pp.23-34
    • /
    • 2019
  • Fat reduction in the formulation of cheese emulsion causes problems in its flowability and functional characteristics during spray-dried cheese powder production. In order to eliminate these problems, the potential of using microparticulated whey protein (MWP) in cheese emulsions was examined in this study. Reduced-fat white-brined cheese emulsions (RF) with different dry-matters (DM) (15%, 20%, and 25% excluding emulsifying salt) were produced using various MWP concentrations (0%-20% based on cheese DM of emulsion). Their key characteristics were compared to full-fat cheese emulsion (FF). MWP addition had no influence on prevention of the phase separation observed in the instable group (RF 15). The most notable effect of using MWP was a reduction in apparent viscosity of RF which significantly increased by fat reduction. Moreover, increasing the amount of MWP led to a decrease in the values of consistency index and an increase in the values of flow behavior index. On the other hand, using high amounts of MWP made the emulsion more liquid-like compared to full-fat counterpart. MWP utilization also resulted in similar lightness and yellowness parameters in RF as their full-fat counterparts. MWP in RF increased glossiness and flowability scores, while decreased mouth coating scores in sensory analyses. Fat reduction caused a more compact network, while a porous structure similar to FF was observed with MWP addition to RF. In conclusion, MWP showed a good potential for formulation of reduced-fat cheese emulsions with rheological and sensorial characteristics suitable to be used as the feeding liquid in the spray drying process.

Formation of Cheese Flavor Compounds by Amino Acid Catabolism (아미노산 이화작용에 의한 치즈 풍미 생성)

  • Lee, Won-Jae
    • Journal of Dairy Science and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.33-36
    • /
    • 2007
  • Catabolism of amino acids, including sulfur-containing amino acids, can be responsible for the development of cheese flavor during ripening Since accelerating, intensifying, modulating cheese flavor development is of major economical interests, the identification of flavor compounds and enzymes contributing to cheese flavor development needs to be investigated. Generally, two different pathways, which are a transamination pathway catalyzed by aminotransferases and an elimination reaction catalyzed by lyases, potentially lead to conversion of amino acids into flavor compounds. In this review, enzymes and amino acid catabolic pathways responsible for cheese flavor formation will be discussed.

  • PDF

Quality Properties of Appenzeller Cheese Containing Sasam(Codonopsis lanceolate) Wine (사삼주를 이용한 아펜젤러 치즈의 품질 특성)

  • Choi, Hee-Young;Park, En-Ha;Yang, Chul-Ju;Choi, Kap-Sung;Kim, Hoi-Gyung;Bae, In-Hyu
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.3
    • /
    • pp.352-360
    • /
    • 2010
  • This study was performed to develop a Korean natural cheese with traditional medical wine, making it different from foreign natural cheese. The effects of cheese with Sasam(Codonopsis lanceolate) wine(CLW) on the quality properties during the ripening period of natural cheese were investigated. The properties investigated were growth of lactic acid bacteria, characteristics of ripening, and sensory characteristics. Four vats of cheese were made on the same day from the same tank of fresh milk. Cheese samples were prepared with CLW at 2.0%, 4.0% and 6.0% of raw milk. Changes in gross composition, viable cell counts, pH, water soluble nitrogen(WSN), non casein nitrogen(NCN), non protein nitrogen(NPN), and proteolysis during maturation were measured. Polyacrylamide gel electrophoresis(PAGE) patterns were determined with control cheese. Viable cell counts of control and CLW cheese were not significantly different. The pH of CLW cheese increased gradually during maturation, and saponin levels and levels of NPN, NCN, and WSN were higher in CLW cheeses than control cheese. For most compositional data, the 4.0% CLW cheese was most similar to the control cheese. The PAGE pattern of cheese caseins indicated that the CLW cheeses degraded more rapidly than the control cheese. Control and 2.0% CLW cheese had good sensory scores, while scores for 4.0% and 6.0% CLW cheese were lower. However, sensory data depreciated with added levels of CLW, especially at a level of 4.0% or more. Further studies on levels of CLW and processing methods are required to improve sensory quality.

Effects of Processing Conditions on the Sensory Properties of Cheddar Cheese (체다치즈의 제조조건이 관능특성에 미치는 영향)

  • Yoon, Hee-Nam;Um, Ki-Won;Bailey, M.E.
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.750-754
    • /
    • 1991
  • The perceived intensities of Cheddar cheese flavor were investigated in terms of cheese processing conditions and types of panels participated. The mean intensities of sensory properties for Cheddar cheese were higher in untrained panels compared to those in trained panels. There are significant differences in Cheddar cheese flavor between six-month and eight-month ripening. Cheddar cheese ripening at 1$13^{\circ}C$ resulted in positive effects on sensory attributes compared to ripening at $8^{\circ}C$. The addition of lactobacilli as starter culture caused an increase of sharpness and a decrease of bitterness. Sharpness and bitterness were not related to other cheese sensory properties, and revealed a positive relationship each other. Cheese acidity was negatively related to rancidity and fruitiness.

  • PDF

Effects of Food Grade Porcine Pancreatic Lipase on the Production of Short-Chain Fatty Acids and its Contribution (식용 돼지췌장 리파제가 저급지방산 생성과 체다치즈 풍미향상에 미치는 영향)

  • Kwak, Hae-Soo;Jeon, Ike-J.;Park, Joung-Nam
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.248-254
    • /
    • 1990
  • Commercial food grade porcine-pancreatic lipase was incorporated into cheese at two different levels of concentration and ripened at $7^{\circ},\;13^{\circ}\;and\;21^{\circ}C$ Gas chromatographic analysis showed that the pancreatic lipase-treated cheese produced significantly higher levels of short-chain free fatty acids than controls. At $21^{\circ}C$ the high level of pancreatic lipase-treated cheese produced medium flavor cheese at 1 wk and close to sharp flavor cheese at 3 wk without causing distinctive defects. The low level of pancreatic lipase-treated cheese developed a number of good quality cheese. They were roughly equivalent to medium and sharp cheeses when ripened at $7^{\circ},\;13^{\circ}\;and\;21^{\circ}C$ for 3 to 15wk. Statistical analyses indicated that there were significant correlations between aged Cheddar flavor and the concentration of c6 as individual short chain free fatty acids (FFA) or C4 and C6 FFA combinations. Pancreatic lipase may be applicable for the accelerated ripening of Cheddar cheese if appropriate conditions are used.

  • PDF

Immobilization of Thermolysin and Application of the Immobilized Thermolysin to Cheese-making (Thermolysin의 고정화(固定化)와 고정화(固定化) Thermolysin의 Cheese제조(製造)에의 이용(利用))

  • Yun, Se-Eok
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.245-251
    • /
    • 1988
  • Thermolysin was immobilized on Dowex MWA-1 with 10% glutaraldehyde and incorpo rated into a fluidized-bed continuous coagulation scheme to make Cheddar type cheese. The activity yield of thermolysin was 25%. The immobillized thermolysin was stable at $60^{\circ}C$ in the presence of 1/200M calcium ions and the half-life value is 16 days at the temperature. Raw milk alkalified to pH 7.0 was passed through a column of thermolysin beads at $55^{\circ}C$, cultivated with Streptococcus cremoris and allowed to coagulate. A typical milk curd was formed to make Cheddar type cheese, avoiding troublesome microbial contamination successfully during continuous hydrolysis process. During ripening of this cheese for 6 months at $10^{\circ}C$, its ripening ratio and taste were similar to those of cheese prepared by the traditional method.

  • PDF

Changes in Fat in Gouda Cheese by the Psychrotrophic Bacterium Acinetobacter Genomospecies 10 (내냉성미생물인 Acinetobacter genomospecies 10에 의한 gouda cheese의 지방의 변화)

  • Shin, Yong Kook;Oh, Nam Su;Lee, Hyun Ah;Nam, Myoung Soo
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.174-179
    • /
    • 2015
  • The presence of psychrotrophic bacteria downgrades the quality of dairy products. This study evaluated the effect of lipolytic psychrotrophic bacteria on the chemical properties of Gouda cheese made from raw milk experimentally inoculated with a psychrotrophic bacterium (Acinetobacter genomospecies 10). Raw milk experimentally inoculated with Acinetobacter genomospecies 10 and refrigerated at $4^{\circ}C$ for 3 or 6 days produced a 6-week ripened Gouda cheese with a significant decrease in total solids (p<0.05) or an increased fat content (p<0.05), respectively. Raw milk inoculated with Acinetobacter genomospecies 10 and refrigerated for 3 days had higher (p<0.05) SCFFA (1.35 times), MCFFA (1.42 times), and LCFFA (1.44 times) than the control 6-week ripened Gouda cheese. The cheese manufactured from the inoculated and refrigerated raw milk had higher (p<0.05) total free fatty acids (1.68 times) compared with the control. Raw milk inoculated with Acinetobacter genomospecies 10 and refrigerated for 6 days had increased SCFFA (1.45 times), MCFFA (1.28 times), and LCFFA (1.38 times) compared with the control 6-weeks ripened Gouda cheese. The 6-week ripened Gouda cheese manufactured from this inoculated milk had higher (p<0.05) total free fatty acids (1.34 times) compared with the control. The results indicated that the production of excessive free fatty acids in dairy products by psychrotrophic bacteria can be critical in predisposing dairy products to off-flavors and in turn degrading their quality.

Pyrolysis/GC-Mass Spectrometry Analysis for Rapid Identification of Volatile Flavour Compounds of Accelerated Ripened Cheddar Cheese and Enzyme-Modified Cheese (단기숙성치즈 및 EMC 치즈의 휘발성 풍미성분 신속분석방법으로서 Pyrolysis/GC-Mass Spectrometry의 이용)

  • ;;;S.S.B. Haileselassie;V.A. Yaylayan;B.H. Lee
    • Food Science of Animal Resources
    • /
    • v.21 no.3
    • /
    • pp.256-264
    • /
    • 2001
  • Pyrolysis/GC-mass spectrometry(Hewlet-Packard 5890GC/mass selective detector, 5971 BMSD), interfaced to a CDS Pyroprobe 1500 was optimized for rapid analysis of flavour compounds in Cheddar cheese. Twenty flavour compounds, including aldehydes(4), ketones(4), fatty acids(10), alcohol(1), and hydrocarbon(1), were identified from Cheddar cheeses. In total, Twenty-three flavour compounds aldehydes(2), ketones(8), alcohols(3), fatty acids(7), lactone(1), benzene derivative(1) and amide(1) were identified from two samples of accelerated-ripened Cheddar cheese treated with the proteolytic enzymes of Lactobacillus casei LGY. In total, Twenty-one flavour compounds; aldehydes(2), ketones(5), alcohols(2), fatty acids(11), and lactone(1) were identified from enzyme-modified cheese(EMC) treated with the combination of the proteolytic enzymes of Lactobacillus casei LGY and commercial endopeptidase or lipase. However, All the flavour compounds identified by pyrolysis/GC/MS in samples of ARC and EMC were not determined whether they are recognized as typical Cheddar flavour or not. More studies were requested on the development of methods for a rapid and convienent analysis of dairy fermented products using pyrolysis/GC-mass spectrometry.

  • PDF