Quality Properties of Appenzeller Cheese Containing Sasam(Codonopsis lanceolate) Wine

사삼주를 이용한 아펜젤러 치즈의 품질 특성

  • Choi, Hee-Young (Dept. of Animal Science & Technology, Sunchon National University) ;
  • Park, En-Ha (Dept. of Animal Science & Technology, Sunchon National University) ;
  • Yang, Chul-Ju (Dept. of Animal Science & Technology, Sunchon National University) ;
  • Choi, Kap-Sung (Dept. of Food Science, Sunchon National University) ;
  • Kim, Hoi-Gyung (College of Human Environmental Sciences, Wonkwang University) ;
  • Bae, In-Hyu (Dept. of Animal Science & Technology, Sunchon National University)
  • 최희영 (순천대학교 동물자원과학과) ;
  • 박은하 (순천대학교 동물자원과학과) ;
  • 양철주 (순천대학교 동물자원과학과) ;
  • 최갑성 (순천대학교 식품공학과) ;
  • 김회경 (원광대학교 생활과학대학) ;
  • 배인휴 (순천대학교 동물자원과학과)
  • Received : 2010.06.28
  • Accepted : 2010.07.29
  • Published : 2010.09.30

Abstract

This study was performed to develop a Korean natural cheese with traditional medical wine, making it different from foreign natural cheese. The effects of cheese with Sasam(Codonopsis lanceolate) wine(CLW) on the quality properties during the ripening period of natural cheese were investigated. The properties investigated were growth of lactic acid bacteria, characteristics of ripening, and sensory characteristics. Four vats of cheese were made on the same day from the same tank of fresh milk. Cheese samples were prepared with CLW at 2.0%, 4.0% and 6.0% of raw milk. Changes in gross composition, viable cell counts, pH, water soluble nitrogen(WSN), non casein nitrogen(NCN), non protein nitrogen(NPN), and proteolysis during maturation were measured. Polyacrylamide gel electrophoresis(PAGE) patterns were determined with control cheese. Viable cell counts of control and CLW cheese were not significantly different. The pH of CLW cheese increased gradually during maturation, and saponin levels and levels of NPN, NCN, and WSN were higher in CLW cheeses than control cheese. For most compositional data, the 4.0% CLW cheese was most similar to the control cheese. The PAGE pattern of cheese caseins indicated that the CLW cheeses degraded more rapidly than the control cheese. Control and 2.0% CLW cheese had good sensory scores, while scores for 4.0% and 6.0% CLW cheese were lower. However, sensory data depreciated with added levels of CLW, especially at a level of 4.0% or more. Further studies on levels of CLW and processing methods are required to improve sensory quality.

본 연구에서는 사삼주를 자연 치즈에 접목시킴으로써 사삼주의 약리효과와 고유의 향미가 부여된 한국형 기능성 치즈개발을 위해 사삼주 첨가 아펜젤러 치즈(Appenzeller cheese)를 제조하여 사삼주 첨가가 치즈의 전반적인 품질 변화와 관능성에 미치는 영향을 검토하였다. 사삼주의 첨가가 숙성 중 유산균의 증식과 산 생성에 큰 영향을 미치지는 않았으나, 사삼주 6.0% 첨가구가 다소 높게 나타났고. 숙성 기간에 따라 $\alpha_{s1}$-casein의 분해가 일어나고 사삼주의 첨가량이 증가할수록 분해도가 높았으며, 숙성 촉진의 효과를 기대해 볼 수 있었다. 치즈의 총 질소 화합물(NPN, NCN, WSN)의 변화에서는 숙성 기간이 경과함에 따라 대체적으로 대조구와 첨가구 모두 증가하였다. 사삼주 첨가에 따른 분해도는 숙성 초에는 차이가 거의 없었으나, 숙성 15주에는 사삼주 첨가량이 많을수록 단백질의 분해도가 더 높은 것으로 나타났다. 사삼주 치즈의 조사포닌 함량을 측정한 결과, 4.0% 첨가구에서 비교적 높은 사포닌 회수율을 보였고, TBA 값은 숙성 초기보다 숙성 이후가 대조구보다 첨가구에서 다소 낮은 값을 보이는 것을 알 수 있었다. 소비자 기호도에서는 치즈의 향미와 맛을 제외한 외관과 조직감에서 첨가구가 다소 높은 값을 보였다. 이상의 결과를 종합하면 사삼주의 첨가가 치즈 제조상의 특성에는 큰 영향을 미치지 않았으나 첨가 수준에 따른 단백질 분해도와 일반성분의 차이를 볼 수 있었으며, 사삼주를 첨가함으로써 사포닌이 치즈 내 잔존함을 확인할 수 있었기에 이를 이용한 한국형 기능성 자연 치즈 개발이 가능할 것으로 기대되었다.

Keywords

References

  1. AOAC 1990. Official Methods of Analysis, 13th ed. Association of official Analytical Chemists. pp.155-139. Washington D.C., USA
  2. Bae IH. 1989. Studies on properties and caseinolytic action of extracellular protease from Saccharomycopsis lipolytica. Sungkyunkwan Univ. a doctor's thesis. pp.78-79
  3. Bergamini CV, Hynes ER, Zalazar CA. 2006. Influence of probiotic bacteria on the proteolysis profile of a semi-hard cheese. Int Dairy J 16:856-866 https://doi.org/10.1016/j.idairyj.2005.09.004
  4. Choi HY, Choi HJ, Yang CJ, Lee SS, Choi GS, Park JR, Chun SS, Shin HJ, Bae IH. 2009. Quality properties of Appenzeller cheese containing green tea powder. J Korean Dairy Technol Sci 27:7-16
  5. Chung BS, Im DS. 1976. On the composition of Codonopsis lanceolata(Benth et Hook). Program the 25th Annual Convention of the Pharmaceutical Society of Korea. 26
  6. Chung HK, Choe CS, Lee JH, Chang MJ, Kang MH. 2003. Oxidative stability on the pine needle extracted oils and sensory evaluation of savored laver made by extracted oils. Korean J Food Culture 18:89-95
  7. Chung JH, Shin PG, Ryu JC, Jang DS, Cho SH. 1997. Chemical compositions of Platycodon grandiflorus(Iacquin) A. De Candolle. Agricultural Chemistry and Biotechnology 40: 148-151
  8. Fox PF. 1981. Proteinases in dairy technology. Neth. Milk Dairy J 35:233-239.
  9. Grappin R, Rank TC, Olson NF. 1984. Primary proteolysis of cheese proteins during ripening, A review. J Dairy Sci 68:531-540
  10. Han EG, Cho SY. 1997. Effect of Codonopsis lanceolata water extract on the levels of lipid in rats fed high fat diet. J Korean Soc Food Sci Nutr 26:1181-1186
  11. Han EG, Sung IS, Moon HG, Cho SY. 1998. Effect of Codonopsis lanceolata water extract on the levels of lipid in rats fed high fat diet. J Korean Soc Food Sci Nutr 27:940-944
  12. Heo JY, Shin HJ, Oh DH, Cho SK, Yang CJ, Kong IK, Lee SS, Choi GS, Choi SH, Kim SC, Choi HY, Bae IH. 2006. Quality properties of Appenzeller cheese added with chlorella. Korean J Food Sci Ani Resour 26:525-531
  13. Hong WS, Lee JS, Kim EJ, Choi YS. 2006. A study on the consumption and preference of Codonopsis lanceolata by housewives. Korean J Food Cookery Sci 22:447-457
  14. Hull ME. 1947. Studies on milk protein colorimetric determination of the partial hydrolysis of the proteins in milk. J Dairy Sci 30:881-884 https://doi.org/10.3168/jds.S0022-0302(47)92412-0
  15. Jeon WM, Kang SH, Kim SH, Moon YI, Park DJ, Oh SJ, Im JY, Han GS. 2007. Dairy Chemistry and Biochemistry. p.130. Life Science Publishing Co.
  16. Juliet H. 1999. A Complete Illustrated Guide to the Cheeses of the World. p.102. Lorenz Books. NY
  17. Kessler A, Knusel H, Raemy O, Rentsch F, Sollberger H. 1990. Der Tilsiter und der Appenzeller. in Kasefabrikation. pp. 71-78. LMZ-Zillikofen. Switzerland
  18. Kosikowski FV Mistry. 1997. Cheese and Fermented Milk Foods, 2nd. edn., pp. 281-286. pp.560-577. Edwards Brothers Inc. Michigan
  19. Ledford RA, Sullivan AC, Nath KR. 1966. Residual casein fractions in ripened cheese determined by polyacrylamide-gel elctrophoresis. J Dairy Sci 49:1098-1101 https://doi.org/10.3168/jds.S0022-0302(66)88024-4
  20. Lee MJ, Lee SJ, Cho JE, Jung EJ, Kim MC, Kim GH, Lee YB. 2002. Flavor characteristics of volatile compounds from shriomp by GC olfactometry. Korean J Food and Nutr 31:953-957 https://doi.org/10.3746/jkfn.2002.31.6.953
  21. McSweeney PLH, Fox PF. 1997. Indices of Cheddar cheese ripening. Proceed, 5th Cheese Sym., National Dairy Products Research Centre, Moorepark, Fermoy, Co., Cork, Ireland, pp.73-89
  22. Oberg CJ, Davis H, Richardson GH, Ernstrom CA. 1986. Manu facture of Cheddar cheese using proteinase-negative mutants of Streptococcus cremoris. J Dairy Sci 69:2975-2981 https://doi.org/10.3168/jds.S0022-0302(86)80759-7
  23. Ohmiya Y, Kobayashi K, Nakajima Y. 1978. Cloning and characterization of the luciferase from the marine ostracod Cypridina noctiluca. J Toxicol Sci 3:31-37 https://doi.org/10.2131/jts.3.31
  24. Park JK, Kim YH, Kim KS, Kwang JJ. 1989. Volatile favor components of Codonopsis lanceolate on lymphocyte and CLW national macrophage. Korean J Food Sci Technol 34:732-736
  25. Puchades R, Lemieux L, Simard RE. 1989. Evolution of free amino acids during the ripening of Cheddar cheese containing added lactobacilli strains. J Food Sci 54:885-888 https://doi.org/10.1111/j.1365-2621.1989.tb07905.x
  26. SAS. 1990. User's Guide: Statistics, Version 6 Edition. SAS Inst., Inc., Cary, NC, U.S.A.
  27. Sullivan Jr, James D, Miyoshi Ikawa. 1972. Variations in inhibition of growth of five Chlorella strains by mycotoxins and other toxic substances. J Agric Food Chem 20:921-922 https://doi.org/10.1021/jf60182a044
  28. Swaisgood HE. 1975. Methods of Gel Electrophoresis of Milk Protein. p.33. American Dairy Science Association. Champaign. IL
  29. Tejada L, Abellan A, Cayuela JM., Martinez-Cacha A, Fernandez- Salguero J. 2008. Proteolysis in goat's milk cheese made with calf rennet and plant coagulant. Int Dairy J 18:139-146 https://doi.org/10.1016/j.idairyj.2007.08.010
  30. Thage BV, Rattray FP, Laustsenm MW, Ardo Y, Barkholt V, Houlberg U. 2004. Purification and characterization of a branched-chain amino acid aminotransferase from Lactobacillus paracasei subsp, paracasei CHCC 2115. J Appl Microbiol 96:593-602 https://doi.org/10.1111/j.1365-2672.2004.02163.x
  31. Visser FM. W. 1977a. Contribution of enzymes from rennet, starter bacteria milk to proteolysis and flavour devlopment in Gouda cheese. 3. protein breakdown ; analysis of the soluble nitrogen and amino acid nitrogen fractions. Neth. Milk and Dairy J 31:188-209
  32. Visser FMW, Groot-Mastert EADe. 1977b. Contribution of enzymes fromrennet, starter bacteria milk to proteolysis and flavour development in Gouda cheese. 4. protein breakdown; a gel electrophoretical study. Neth Milk and Dairy J 31:210-239
  33. Yamauchi K, Kang KH, Kaminogawa S. 1986. Proteolsis by Debaryomyces hansenii and lactic starters in skim milk culture. Jap J Zootechnol Sci 47:15-17
  34. Yamauchi K, Kaminogawa S. 1972. Decomposition of milk proteins by milk protease. Agr Biol Chem 36:249-254 https://doi.org/10.1271/bbb1961.36.249
  35. Yang HS, Choi SS, Han BH, Kang SS, Woo WS. 1975. Sterols and tripenoids from Codonopsis lanceolata. J Pharm Soc Korea 19:209-213
  36. Yvon M, Rijnen L. 2001. Cheese flavour formation by amino acid catabolism. Int Dairy J 11:185-201 https://doi.org/10.1016/S0958-6946(01)00049-8