• Title/Summary/Keyword: Korean charcoal

Search Result 668, Processing Time 0.029 seconds

Desorption Efficiency of Various Cosolvents for Organic Solvent Mixtures Collected on Activated Charcoal Tube (활성탄관에 포집된 혼합 유기용제의 보조탈착용매 변화에 따른 탈착률 비교)

  • Kim, Kang Yoon;Ro, In Bong;Kim, Hyun Wook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.2
    • /
    • pp.209-221
    • /
    • 1996
  • The purpose of this study was to find a suitable cosolvent to $CS_2$ so that desorption efficiency can be improved for both polar and non-polar organic solvent mixtures collected on an activated charcoal tube. Cosolvents added to $CS_2$ include: DMF(N,N-dimethylformamide): $CS_2$ (v/v 1:99), DMF:$CS_2$(v/v 3:97), BC (butyl carbitol, 2-(2-butoxy ethoxy) ethanol):$CS_2$(v/v 1:99), and BC:$CS_2$(v/v 3:97)). The results obtained were as follows : 1. Comparing the desorption efficiency of $CS_2$ with those of $CS_2$ with 1, 3, 5 % DMF and 1, 3 % BC cosolvents for two different groups of charcoal tubes each containing 8 different polar and non-polar organic solvents with 3 different concentration levels, the desorption efficiencies of the cosolvent-added $CS_2$ increased significantly for all polar organic solvents regardless of concentration levels tested. For non-polar organic solvents, no noticeable improvement was detected except xylene and trichloroethylene. The desorption efficiency of xylene increased significantly while that of trichloroethylene increased significantly at the lowest concentration level tested. 2. Either 5 % DMF or 3 % BC was the most suitable cosolvent because the desorption efficiency for non-polar organic solvent mixtures was similar or slightly improved compared with that of $CS_2$, while those of for polar organic solvent mixtures were above 75 % except for cyclohexanone. 3. The smallest variations in desorption efficiency represented by the ratio calculated from the maximum to minimum desorption efficiency for all concentration levels tested were found when 3 % BC was used as a cosolvent. The above results indicate that the desorption efficiency of $CS_2$ particularly for polar organic solvent mixtures collected on a charcoal tube can be significantly improved by the use of cosolvents such as 5 % DMF or 3 % BC. A caution, however, is in order for selecting a cosolvent whenever the cosolvent itself is being used in the workplace or the impurities contained in the cosolvent may interfere with the analytical results. In addition, to improve desorption efficiencies for such organic solvents as cyclohexanone or ketones, it is recommended to use suitable collection and desorption media other than the traditional method of charcoal tube collection/$CS_2$ desorption.

  • PDF

A Study on the Removal Efficiency of a TEDA Impregnated Charcoal Bed for Methyl iodide under Humid Conditions (습윤 조건하에서 TEDA함침탄소층에 의한 Methyl Iodide 제거효율에 관한 연구)

  • Won Jin Cho;Soon Heung Chang
    • Nuclear Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.161-168
    • /
    • 1984
  • The adsorption model to predict the time dependent removal efficiency of methyl iodide by triethylenediamine (TEDA) impregnated charcoal bed under humid condition is proposed. Under humid conditions, the reduction of equilibrium adsorption capacity and effective pore diffusivity is considered. The predicted values are compared with the experimental results.

  • PDF

Development of Carbonization Technology and Application of Unutilized Wood Wastes(II) - Carbonization and it's properties of wood-based materials - (미이용 목질폐잔재의 탄화 이용개발(II) - 수종의 목질재료 탄화와 탄화물의 특성 -)

  • Kong, Seog-Woo;Kim, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.57-65
    • /
    • 2000
  • Objective of research is obtain fundamental data of carbonized wood wastes for soil condition, de-ordorization, absorption of water, carrier for microbial activity, and purifying agent for water quality of river. The carbonization technique and the properties of carbonized wood wastes(wood-based materials) were analyzed. Proximate analysis showed the wood-based materials contains 0.37~2.27% ash, 70~74% volatile matter, and 17~20% fixed carbon. As carbonization temperature was increased, the charcoal yield was decreased. However, no difference in charcoal yield was found due to time increase. The specific gravity after the carbonization decreased about 30~40% comparing to green wood. The charcoal had 1.08~4.18% ash, 5.88~13.79% volatile matter, and 80.15~90.94% fixed carbon. The pH of plywood and particleboard(pH 9 at $400^{\circ}C$, pH 10 at $600^{\circ}C$ and $800^{\circ}C$) made charcoals was higher than that of fiberboard. The water-retention capacity was not affected by the carbonization temperature and time. The water-retention capacity within 24h was about 2~2.5 times of sample weight, and the Equilibrium moisture content(EMC) became 2~10% after 24h. EMC of charcoal from the thinned trees were 9.40~11.82%($20^{\circ}C$, RH 90%), 6.87~7.61%($20^{\circ}C$, RH 65%), and 1.69~2.81%($20^{\circ}C$, RH 25%). EMC of charcoal from the wood-based materials under $20^{\circ}C$, relative humidity(RH) 90% was similar to EMC of charcoal from the thinned trees(9~11 %). However, under $20^{\circ}C$, RH 25.65%, EMC of charcoal from the wood-based materials were higher(2~3%) than EMC of charcoal from the thinned trees. Every charcoal from the wood-based materials fulfilled the criteria in JWWA K 113-1947.

  • PDF

Effect of Charcoal on the Production of Anti-Salmonella gallinarum IgY (Anti-Salmonella gallinarum Immunoglobulin 생산을 위한 계란의 이용)

  • Rho, Jeong-Hae;Kim, Mi-Hyun;Kim, Young-Boong;Jung, Soon-Hee
    • Food Science of Animal Resources
    • /
    • v.27 no.2
    • /
    • pp.222-227
    • /
    • 2007
  • In order to produce the antibody rich eggs against Salmonella gallinarum(S.G.) causing fowl typhoid, the productions of immunoglobulin in eggs were compared and examined with the feed additives, the variety of adjuvants in vaccines to layers, and the existence of additive antigens other than target microorganism. The examination of the average contents of specific IgY in immunized group by supplying hardwood charcoal showed that the group supplied with 0.5% hardwood charcoal had the highest contents, implying that the supply of hardwood charcoal promoted the production of specific IgY. Adjuvant appeared to have little effect on the average contents of total IgY, but specific IgY contents increased in the immunized group with Freund's adjuvant. Addition of BCG in adjuvant treatment increased specific IgY however, this feature was not seen in aluminum hydroxide treated group. Immunization at 15 week layers resulted in higher laying rate than immunization at 21 week and addition of hardwood charcoal in feed recovered laying rate. It was therefore, concluded that the feed supplement, such as hardwood charcoal followed by a proper immunization program concerning adjuvant, vaccination period and supplementary microorganism hastened the production of IgY.

Solvent Leaching Characteristics of Dark Brownish Pigment from Activated Charcoal used in Decolorization of Crude Polysaccharide from Auricularia auricula (흑목이 버섯 다당류의 탈색에 사용된 활성탄으로부터 흑갈색 색소의 용매 침출 특성)

  • Kim, Hyeon-Min;Hur, Won;Lee, Shin-Young
    • Food Engineering Progress
    • /
    • v.13 no.4
    • /
    • pp.262-268
    • /
    • 2009
  • A dark brownish pigment in the crude polysaccharide from Auricularia auricula was adsorbed by activated charcoal. The leaching of the pigment adsorbed on activated charcoal and regeneration of activated charcoal used was investigated with eight kinds of solvents. The highest leaching capacity was obtained with the alkaline solution (KOH). The optimum volume of 1 M KOH solution per activated carbon was 45 mL/g, and the treatment for 10 min during single stage leaching was sufficient to achieve the leaching equilibrium. Second-order kinetic model provided the best fitting for the pigment leaching. The pigment leaching capacity of 88.9% was obtained by seven times of treatment with 1 M KOH solution at 25$^{\circ}C$, while at 95$^{\circ}C$, leaching capacity of 82.6% was achieved with single stage alone showing the significant increase of leaching capacity with increasing temperature. The regenerated activated charcoal was nearly as effective as fresh activated charcoal in pigment adsorption of crude polysaccharide from Auricularia auricula.

Development of a Simple and Reproducible Method for Removal of Contaminants from Ginseng Protein Samples Prior to Proteomics Analysis (활성탄을 이용한 불순물제거에 의한 효과적인 인삼 조직 단백질체 분석 방법 개선 연구)

  • Gupta, Ravi;Kim, So Wun;Min, Chul Woo;Sung, Gi-Ho;Agrawal, Ganesh Kumar;Rakwal, Randeep;Jo, Ick Hyun;Bang, Kyong Hwan;Kim, Young-Chang;Kim, Kee-Hong;Kim, Sun Tae
    • Journal of Life Science
    • /
    • v.25 no.7
    • /
    • pp.826-832
    • /
    • 2015
  • This study describes the effects of activated charcoal on the removal of salts, detergents, and pigments from protein extracts of ginseng leaves and roots. Incubation of protein extracts with 5% (w/v) activated charcoal (100-400 mesh) for 30 min at 4℃ almost removed the salts and detergents including NP-40 as can be observed on SDS-PAGE. In addition, analysis of chlorophyll content showed significant depletion of chlorophyll (~33%) after activated charcoal treatment, suggesting potential effect of activated charcoal on removal of pigments too along with the salts and detergents. 2-DE analysis of activated charcoal treated protein samples showed better resolution of proteins, further indicating the efficacy of activated charcoal in clearing of protein samples. In case of root proteins, although not major differences were observed on SDS-PAGE, 2-DE gels showed better resolution of spots after charcoal treatment. In addition, both Hierarchical clustering (HCL) and Principle component analysis (PCA) clearly separated acetone sample from rest of the samples. Phenol and AC-phenol samples almost overlapped each other suggesting no major differences between these samples. Overall, these results showed that activated charcoal can be used in a simple manner to remove the salts, detergents and pigments from the protein extracts of various plant tissues.

Characteristics of Greenhouse Gas Emissions from Charcoal Kiln (숯가마에서 발생하는 온실가스 배출 특성)

  • Lee, Seul-Ki;Jeon, Eui-Chan;Park, Seong-Kyu;Choi, Sang-Jin
    • Journal of Climate Change Research
    • /
    • v.4 no.2
    • /
    • pp.115-126
    • /
    • 2013
  • Recently Korea considers the source of biomass burning emissions reflecting national characteristic, so that includes the inventory of emission source but preceding research is rarely implemented in Korea. Therefore, a study on characteristics of greenhouse gas emissions from biomass burning is necessary and it also makes the source management effectively when the climate-atmospheric management system takes effect. In this study, using the manufactured charcoal kiln and the number of experiment was three times to get a reliable experiment result. The sampling time was decided by changing degree in charcoal kiln and charcoal manufacturing process. The results of calculation greenhouse gas emission factor from charcoal kiln were $668g\;CO_2/kg$, $20g\;CH_4/kg$, $0.01g\;N_2O/kg$. Using the emission factor developed in this study, estimate the emissions from charcoal kiln in Korea. The results of calculation were $46,040ton\;CO_2/yr$, $1,378ton\;CH_4/yr$, $0.69ton\;N_2O/yr$ and greenhouse gas emissions applying GWP are as follows. $CH_4$ emissions was $28,947ton\;CO_2eq./yr$, $N_2O$ emissions was $214ton\;CO_2eq./yr$. As a results, Gross emissions of charcoal kiln in Korea was $75,201ton\;CO_2eq./yr$, but the oak used in this study is included to the biomass so emissions of $CO_2$ are excluded. Therefore the net emissions of charcoal kiln in Korea was $29,161ton\;CO_2eq./yr$.

Studies on the Reactivity of Korean Anthracites. (Part 1) Setting-Up of an Apparatus for Testing the Reactivity of Korean Anthracites (無煙炭의 反應成에 關한 硏究 (第1報) 反應成 試驗藏置의 試作)

  • Hahn, Tae-Hee;Lee, Chai-Sung;Shin, Sung-Sik
    • Journal of the Korean Chemical Society
    • /
    • v.6 no.1
    • /
    • pp.47-53
    • /
    • 1962
  • The "reactivity" of coal is one of the important characteristics of a coal used as a process raw material as well as a fuel. In this study, the reactivity was measured in terms of the magnitude of the reaction rate constant in the reduction of carbon dioxide with coal. A reactivity-testing apparatus was designed and constructed, and its performance characteristics were investigated by using Korean anthracite and hard-wood charcoal. Experiments were carried out at temperatures ranging from 750 to 1100$^{\circ}C$ with pulverized Korean anthracite whose sizes range from 1 to 10mm in diameter. Results showed that the reaction rate constant was not appreciably affected by the particle size investigated, and the reactivities of the anthracite and the charcoal were found to be a function of reaction temperature alone. It was also found that a straight line was produced when the logarithm of the rate constant is plotted against the reciprocal of the absolute temperature. The reactivities of the charcoal were found to be 2 to 10 times higher than those of the anthracite at a temperature ranging from 750 to 1100$^{\circ}C$, and 90% of carbon dioxide was reduced to carbon monoxide by the anthracite at a temperature above 1050$^{\circ}C$.

  • PDF