Effect of Annealing Temperatures on Charcoal Doped MgB₂

Nam-Kyu Kim^{1,2}, Kai Sin Tan¹, Byung-Hyuk Jun¹, Hai-Woong Park³, Jinho Joo², Chan-Joong Kim¹

¹ Nuclear Nanomaterials Development Laboratory, Korea Atomic Energy Research
² School of Metallurgical and Materials Engineering, Sungkyunkwan
³ Powder Metallurgy Department, Korea University of Technology and Education

Carbon doping remains as one of the most promising techniques to significantly improve the superconducting properties of MgB₂ superconductor. In this study, a cheap and readily available charcoal powder $(1\sim2 \text{ microns})$ was used as a means of a carbon source for doping. Bulk samples with a nominal composition of Mg(B_{0.95}C_{0.05})₂ were prepared and heat treated at temperatures between 650°C to 1000°C for 30 minutes. Enhancement of critical current density (J_c) at high magnetic fields of the charcoal doped samples was observed at all annealing temperatures.

Keyword: MgB2 superconductivity, charcoal, carbon source, doping effect, critical current density

Acknowledgement

This research was supported by a grant (R-2006-1-248) from Electric Power Industry Technology Evaluation & Planning, Republic of Korea.