• Title/Summary/Keyword: Korean angiosperms

Search Result 39, Processing Time 0.054 seconds

Seed and seed coat morphology in monotypic and endemic genera of Korean angiosperms

  • Se-Moon AHN;Hye-Rin KIM;Kweon HEO
    • Korean Journal of Plant Taxonomy
    • /
    • v.53 no.2
    • /
    • pp.102-109
    • /
    • 2023
  • The basic information of ovule and seed characteristics was investigated for five monotypic and endemic genera in the Korean peninsula as categorized by the Flora of Korea category. The carpels and seeds were sectioned with a rotary microtome. Mature seeds were coated with platinum using an ion sputter and observed using a scanning electron microscope. As a result, Abeliophyllum was found to be anatropous and a unitegmic ovule, with a slightly colliculate seed surface and exotestal seed coat type. The ovule of Coreanomecon was anatropous and bitegmic, having a distinct echinate seed surface, and exo-endotestal seed coat type with a prismatic crystal in the mesotesta. The ovule of Hanabusaya was anatropous and a unitegmic, with a long reticulate seed surface sculpture, and distinct exotestal seed coat type. In addition, a wing developed at the opposite side of the raphe bundle. Megaleranthis was an anatropous and bitegmic ovule, having a small pentagonal disk shape, a concave seed surface and exotestal seed coat type. Finally, Pentactina was also anatropous and a unitegmic ovule, reticulate seed sculpture, and endotestal seed coat type. These data will be proving to be a source of good information for securing bio-sovereignty in the near future.

Ultrastructure of Haustorial Cells of Cuscuta australis R. Brown (실새삼(Cuscuta australis R. Brown) 흡기세포(吸器細胞)의 미세구조(微細構造))

  • Lee, Chai-Doo;Lee, Kyu-Bae
    • Applied Microscopy
    • /
    • v.16 no.2
    • /
    • pp.49-60
    • /
    • 1986
  • Ultrastructures of the large and elongated cells (idioblasts) in the haustorium of a parasitic angiosperm, Cuscuta australis R. Brown growing on the host plant, Trifolium repens L. were investigated by the electron microscopy. The idioblasts were characterized by the presence of a large nucleus, small vacuoles, and dense cytoplasm including a number of various cell organelles such as ribosome, rough endoplasmic reticulum(r-ER), mitochondrion, dictyosome, proplastid, multilamellar structure(MLS), microfilament bundle(MFB), and cytosegresome. Therefore, it is suggested that the idioblasts are metabolical1y very active. Particularly, MLS, MFB, and cytosegresome observed in this study did not appear in the haustorial cells of the other parasitic angiosperms. MLS was transformed into vacuole and also incorporated with cell wall. MFB composed of microfilaments, about each 7.5 nm in diameter, was observed in nucleus and also cytoplasm. Some types of MFB were distinguished on the basis of arrangement of microfilaments. A part of cytoplasm sequestered by stacked cisternae of smooth ER(s-ER), cytosegresome, was altered into a vacuole which was formed by digestion of the sequestered cytoplasm and of cisternae of s-ER. Cell organelles such as MLS, MFB, and cytosegresome were discussed in relation to the metabolic control of the idioblasts.

  • PDF

Intraspecific genetic variation in Corynandra chelidonii (Angiosperms: Cleomaceae) as revealed by SCoT, ISSR and RAPD analyses

  • Sirangi, Subash;Jogam, Phanikanth;Nemali, Gandhi;Ajmeera, Ragan;Abbagani, Sadanandam;Raju, Vatsavaya S.
    • Journal of Plant Biotechnology
    • /
    • v.47 no.4
    • /
    • pp.289-297
    • /
    • 2020
  • The genetic diversity of two subpopulations of Corynandra chelidonii, one of terrestrial and the other of aquatic environments, was measured with molecular markers, such as start codon targeted (SCoT), inter simple sequence repeats (ISSR), and random amplification of polymorphic DNA (RAPD). The traditional morphological traits such as habitat, habit, leaf morphology, the colour of the sepals and petals, number of stamens, and seed morphology formed the base for their realization as two varieties, C. chelidonii var. pallae and C. chelidonii var. chelidonii. The polymorphism between the two variants was 100% with the primers SCoT-2 and OPA-1 and 4, while maximum polymorphism was detected with ISSR-2, SCoT-3, and OPA-3. The study used, for the first time, more than one molecular marker to assess the genetic variation underscoring the morphological variation in Corynandra chelidonii (L.f.) Cochrane & Iltis. The study justifies the recognition of the two subpopulations of Corynandra chelidonii from aquatic and terrestrial environments as two distinct varieties, C. chelidonii var. pallae (Reddy & Raju) V.S.Raju and C. chelidonii var. chelidonii, respectively, based on the traditional taxonomic evidence.

The role of cytogenetic tools in orchid breeding

  • Samantha Sevilleno Sevilleno;Raisa Aone Cabahug-Braza;Hye Ryun An;Ki‑Byung Lim;YoonJung Hwang
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.2
    • /
    • pp.193-206
    • /
    • 2023
  • Orchidaceae species account for one-tenth of all angiosperms including more than 30,000 species having significant ecological, evolutionary, and economic importance. Despite Orchidaceae being one of the largest families among flowering plants, crucial cytogenetic information for studying species diversification, inferring phylogenetic relationships, and designing efficient breeding strategies is lacking, except for 10% or less of orchid species cases involving mostly chromosome number or karyotype analysis. Also, only approximately 1.5% of the identified orchid species from less than a hundred genera have genome size data that provide crucial information for breeders and molecular geneticists. Various molecular cytogenetic techniques, such as fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH), have been developed for determining ploidy levels, analyzing karyotypes, and evaluating hybridity, in several ornamental crops including orchids. The estimation of genome size and the determination of nuclear DNA content using flow cytometry have also been employed in some Orchidaceae subfamilies. These different techniques have played an important role in supplementing beneficial knowledge for effective plant breeding programs and other related plant research. This review focused on orchid breeding summarizes the status of current cytogenetic tools in terms of background, advancements, different techniques, significant findings, and research challenges. Principal roles and applications of cytogenetics in orchid breeding as well as different ploidy level determination methods crucial for breeding are also discussed.

Chromosome numbers and polyploidy events in Korean non-commelinids monocots: A contribution to plant systematics

  • JANG, Tae-Soo;WEISS-SCHNEEWEISS, Hanna
    • Korean Journal of Plant Taxonomy
    • /
    • v.48 no.4
    • /
    • pp.260-277
    • /
    • 2018
  • The evolution of chromosome numbers and the karyotype structure is a prominent feature of plant genomes contributing to or at least accompanying plant diversification and eventually leading to speciation. Polyploidy, the multiplication of whole chromosome sets, is widespread and ploidy-level variation is frequent at all taxonomic levels, including species and populations, in angiosperms. Analyses of chromosome numbers and ploidy levels of 252 taxa of Korean non-commelinid monocots indicated that diploids (ca. 44%) and tetraploids (ca. 14%) prevail, with fewer triploids (ca. 6%), pentaploids (ca. 2%), and hexaploids (ca. 4%) being found. The range of genome sizes of the analyzed taxa (0.3-44.5 pg/1C) falls well within that reported in the Plant DNA C-values database (0.061-152.33 pg/1C). Analyses of karyotype features in angiosperm often involve, in addition to chromosome numbers and genome sizes, mapping of selected repetitive DNAs in chromosomes. All of these data when interpreted in a phylogenetic context allow for the addressing of evolutionary questions concerning the large-scale evolution of the genomes as well as the evolution of individual repeat types, especially ribosomal DNAs (5S and 35S rDNAs), and other tandem and dispersed repeats that can be identified in any plant genome at a relatively low cost using next-generation sequencing technologies. The present work investigates chromosome numbers (n or 2n), base chromosome numbers (x), ploidy levels, rDNA loci numbers, and genome size data to gain insight into the incidence, evolution and significance of polyploidy in Korean monocots.

Analysis of Some Korean Terminologies on the Reproductive Structures of Seed Plants in Plant Morphology (식물형태학에서 사용하는 종자식물의 생식구조에 관한 한글 용어의 분석)

  • Lee, Kyu Bae
    • Journal of Integrative Natural Science
    • /
    • v.1 no.3
    • /
    • pp.195-209
    • /
    • 2008
  • Some Korean terminologies on reproductive structures of seed plants in plant morphology, written incorrectly in many books, were analysed to propose accurately expressed terminologies. 31 books in areas such as general biology, plant biology, plant morphology, and biological dictionaries and glossaries were selected to analyse the accuracy of the terminologies for reproductive structures in gymnosperms, e.g., cone or strobilus, seed (or ovulate) cone and pollen cone, and conifer(s) or coniferous plants, and for flower structures in angiosperms, e.g., corolla, anther, filament, pistillate (or female) flower and staminate (or male) flower, apocarpous, and syncarpous. The definition and etymology of the terminologies were traced in 4 textbooks of plant anatomy and 2 dictionaries of biology and botany written in English. On the basis of the definition, etymology, and principles for terminology formation according to the International Organization for Standardization (ISO 704:2000), reasonably expressed Korean terminologies were proposed. All of the 8 terminologies examined in this study were included in the glossary of biological terminologies, published by the Korean Association of Biological Sciences in 2005, and designated as an editorial source for science and biology textbooks for middle and high schools by Ministry of Education in 2007. However, the only 1 of the 8 terminologies described in the glossary were consistent with the proposed expression in the present study. These inconsistencies indicated the need for a reassessment of this glossary of biological terminologies. The newly proposed terminologies would facilitate mutual understanding between teachers and students of plant biology.

  • PDF

A study of the chromosome number and genome size of the rare species Rhododendron keiskei var. hypoglaucum in Korea

  • CHOI, Bokyung;KIM, Hyeonjin;BYUN, Hye-Joo;GANG, Geun-Hye;LEE, Yongsoon;MYEONG, Hyeon-Ho;SO, Soonku;JANG, Tae-Soo
    • Korean Journal of Plant Taxonomy
    • /
    • v.52 no.2
    • /
    • pp.102-107
    • /
    • 2022
  • Rhododendron keiskei var. hypoglaucum (Ericaceae) was recently reported in Korea, with a disjunct distribution on the southern islands of the Korean Peninsula. Although chromosome numbers and ploidy variations are important traits in angiosperms, gaining a clear understanding the cytological features of Rhododendron has been hampered by the small size of its chromosomes. We herein report the chromosome number, karyotype structure, and genome size of R. keiskei var. hypoglaucum for the first time. The chromosome number of the investigated plants was 2n = 26 with x = 13 as the base chromosome number, which is the one of the frequently encountered base chromosome numbers in Rhododendron. The karyotype of R. keiskei var. hypoglaucum is composed of metacentric and submetacentric chromosomes similar in length, which ranged from 1.39 to 2.40 ㎛. The DNA 1C-value in all examined accessions was small, ranging from 0.63 to 0.65 pg, further supporting the stable genome size in Rhododendron. These comprehensive cytological results provide a framework for detailed molecular, cytogenetic, and phylogenomic analyses that can be used to interpret the slow species diversification rate in Rhododendron.

Floristic diversity assessment and vegetation analysis of Upper Siang district of eastern Himalaya in North East India (인도 북동부의 동히말라야 상부 Siang 지역의 식물다양성 및 식생 조사)

  • Choudhary, Ritesh Kumar;Srivastava, Ramesh Chandra;Das, Arup Kumar;Lee, Jung-Gu
    • Korean Journal of Plant Taxonomy
    • /
    • v.42 no.3
    • /
    • pp.222-246
    • /
    • 2012
  • Present paper is an outcome of a four-year floristic survey work carried out in Upper Siang district of eastern Himalayan region in India which is also recognized as one of the 39 known 'Biodiversity Hot-Spots' of the world. We present here with a vegetation analysis of this area along with a checklist of 1,003 taxa belonging to 110 families, 529 genera, 994 species, 1 subspecies and 8 varieties of the angiosperms. Besides, one new species, 3 new records to India and 82 endemic species were also recorded. The diversity of herbs and shrubs were found higher than the tree species. Orchidaceae was found the most dominant family followed by Poaceae and Fabaceae. Many threatened plants have also been reported from the area. However, rapid urbanization and Jhum cultivation are imposing direct threat to the natural vegetation. We suggest some conservation measures that could help protecting this natural heritage.

Structure of Opposite Wood in Angiosperms(II) - Structure of Opposite Woods in the Horizontal-growing Stems of Immature Woods - (활엽수(闊葉樹) Opposite재(材)의 구조(構造)(II) - 수평(水平) 생장(生長)시킨 유영목수간(幼 令木樹幹)의 Opposite재(材) 구조(構造) -)

  • Park, Sang-Jin;Park, Byung-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.20-27
    • /
    • 1989
  • This experiment was made to find the peripheral variations of annualring widths, the cell dimensions, microfibril angles and bulk densities within each annual-ring of horizontal-growing young tree of beech(Betul a platyphylla var. japonica) and Oak (Quercus variabilis) from the tension to the opposite side. Also a comparision between the features of the obnormal annual ring for horizontal-growing year and normal annual ring for the straight-growing years was made. The dimension of propotion of the element, the microfibril angles and the bulk density decreased or increased continuously toward opposite side which showed minimum or maximum value. The dimension of elements the microfibril angles and the bulk density decreased or increased continuously towards opposite side which showed minimum or maximum value. The dimension of elements. the microfibril angles and the bulk density in the normal annual rings were similar to those in the lateral woods. whereas were significantly more different in the tension wood than in the opposite wood. The features of typical opposite wood in the hardwoods were influenced by the locations within the inclined stems than effects of the decrease in the annual ring width. The oppostie woods in hardwoods did not conform to the tension wood and lateral wood. The abnormal annual ring included the opposite wood, lateral wood similar to normal wood and tension wood having specialized structure even in the same annual ring.

  • PDF

Structure of Opposite Wood in Angionsperms(I) - Structure of Opposite Woods in the Inclined Stem of Mature Woods - (활엽수(闊葉樹) Opposite재(材)의 구조(構造)(I) - 경사(傾斜) 생장(生長)한 성숙재(成熟材) 수간(樹幹)의 Opposite재(材) 구조(構造) -)

  • Park, Sang-Jin;Park, Byung-Soo;Soh, Won-Taek
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.1-12
    • /
    • 1989
  • To study the structure of opposite wood in the angiosperms. samples were cut from stems and branchs of 10 spcies growing in Korea. The opposite side was defined as being along a line passing from the most wide annual ring of the tension wood on the upper side to the pith and extrapolated through the opposite side. lateral sides being on the right and left of this line. The stem woods growing almost horizontally were surveyed the structural features of the well-developed opposite wood for the tension wood. In the annual-ring of the well-developed opposite woods. an investigation was made on how the dimension of elements, microfibril angles. and cell wall layers change from tension side to opposite side. The structural characteristics of opposite wood in hardwoods realized in this study are as follows: 1. The vessel diameters increased continuously to ward the opposite side in which the values were maximum. The vessel length also increased toward opposite side. but the rates of increase were smaller than those in the vessel diameters. 2. The wood fiber length were decreased from tension toward opposite side. but the rates of decrement were f1actuated within the sampled species. 3. The microfibril angles had the minimum values on the tension side. then increased steeply toward the opposite side in which the values maximum. 4. In the percentage of elements the vessel elements increased continously at a relative rate from the tension to opposite side, whereas the values of the wood fibers were lower in the opposite than the tension side, but the' variation patterns of rays were not seem distinctly. 5. The component layers of the wood fiber in the opposite woods were very similar to the lateral woods.

  • PDF