Browse > Article
http://dx.doi.org/10.5010/JPB.2020.47.4.289

Intraspecific genetic variation in Corynandra chelidonii (Angiosperms: Cleomaceae) as revealed by SCoT, ISSR and RAPD analyses  

Sirangi, Subash (Department of Botany, Kakatiya University)
Jogam, Phanikanth (Department of Biotechnology, Kakatiya University)
Nemali, Gandhi (Department of Botany, Kakatiya University)
Ajmeera, Ragan (Department of Botany, Kakatiya University)
Abbagani, Sadanandam (Department of Biotechnology, Kakatiya University)
Raju, Vatsavaya S. (Department of Botany, Kakatiya University)
Publication Information
Journal of Plant Biotechnology / v.47, no.4, 2020 , pp. 289-297 More about this Journal
Abstract
The genetic diversity of two subpopulations of Corynandra chelidonii, one of terrestrial and the other of aquatic environments, was measured with molecular markers, such as start codon targeted (SCoT), inter simple sequence repeats (ISSR), and random amplification of polymorphic DNA (RAPD). The traditional morphological traits such as habitat, habit, leaf morphology, the colour of the sepals and petals, number of stamens, and seed morphology formed the base for their realization as two varieties, C. chelidonii var. pallae and C. chelidonii var. chelidonii. The polymorphism between the two variants was 100% with the primers SCoT-2 and OPA-1 and 4, while maximum polymorphism was detected with ISSR-2, SCoT-3, and OPA-3. The study used, for the first time, more than one molecular marker to assess the genetic variation underscoring the morphological variation in Corynandra chelidonii (L.f.) Cochrane & Iltis. The study justifies the recognition of the two subpopulations of Corynandra chelidonii from aquatic and terrestrial environments as two distinct varieties, C. chelidonii var. pallae (Reddy & Raju) V.S.Raju and C. chelidonii var. chelidonii, respectively, based on the traditional taxonomic evidence.
Keywords
Cleome chelidonii; varieties; genetic variation analyses; molecular markers; taxonomic status assessment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tamboli AS, Yadav PB, Gothe AA, Yadav SR, Govindwar SP (2018) Molecular phylogeny and genetic diversity of genus Capparis (Capparaceae) based on plastid DNA sequences and ISSR markers. Plant Syst Evol 304(2):205-217
2 Zhang M, Tucker GC (2008) Cleomaceae. In: Wu CY, Raven PH, Hong DY (ed) Flora of China 7:518-521. Science Press, Beijing
3 Rohlf FJ, Fisher DR (1968) Tests for hierarchical structure in random data sets. Syst Biol 17(4):407-412
4 Chandore AN, Yadav US, Yadav SR (2016) A new elegant species of Corynandra (Cleomaceae) from Konkan region of Maharashtra, India. Phytotaxa 260(1):89-94; http://dx.doi.org/10.11646/ phytotaxa.260.1.10   DOI
5 Sundararaghavan R (1993) Capparaceae. In: Sharma BD & Balakrishnan NP (ed) Flora of India 2:248-335. Botanical Survey of India, Calcutta
6 Ajibade SR, Weeden NF, Chite SM (2000) Inter simple sequence repeat analysis of genetic relationships in the genus Vigna. Euphytica 111(1):47-55; https://link.springer.com/article/10.1023/A: 1003763328768
7 APG (Angiosperm Phylogeny Group) IV (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1-20
8 Lewontin RC (1972) The apportionment of human diversity. Evol Biol 6:381-398
9 Hewetson CE (1954) Systematics and ecology of Indian plants or what can be demand of a modern flora? J Bombay Nat Hist Soc 51(1&2):140-144
10 Jogam P, Sandhya D, Shekhawat MS, Alok A, Manokari M, Abbagani S, Allini VR (2020) Genetic stability analysis using DNA barcoding and molecular markers and foliar micromorphological analysis of in vitro regenerated and in vivo grown plants of Artemisia vulgaris L. Ind Crops Prod 151:112476; https://doi.org/10.1016/j.indcrop.2020.112476   DOI
11 Minh PN, Tri MD, Phat NT, Dat BT, Hanh, NN, Luan NQ, Thanh MT, Huynh CH (2015) Two new flavonol glycosides from the leaves of Cleome chelidonii L.f. J Asian Nat Products Res 17(4):338-342
12 Mirashi MV (1956) Contribution to our knowledge of physiological anatomy of some Indian hydrophytes III. The stem of Cleome chelidonii Linn. Proc Indian Acad Sci 43B:233-236
13 Nei M, Roychoudhury AK (1972) Gene differences between Caucasian, Negro, and Japanese populations. Sci 177: 434-436
14 Cochrane TS, Iltis HH (2014) Studies in the Cleomaceae VII: Five new combinations in Corynandra, an earlier name for Arivela. Novon 23(1):21-26; http://doi.org/10.3417/ 2013023   DOI
15 Ethadi SR, Pragada RR, Battu GR (2013) Evolution of antiinflammatory and hepatoprotective activities of different extracts of Cleome chelidonii root in albino rats. Int J Pharma Biosci 4:111-119
16 Pendli S, Rohela GK, Jogam P, Bylla P, Korra R, Thammidala C (2019) High frequency in vitro plantlet regeneration in Solanum trilobatum L., an important ethno-medicinal plant and confirmation of genetic fidelity of R1 plantlets by using ISSR and RAPD markers. Vegetos 32(4):508-520; https://doi.org/10.1007/s42535-019-00069-6   DOI
17 K'Opondo FBO, van Rheenen HA, Muasya RM (2009) Assessment of genetic variation of selected spider plant (Cleome gynandra) morphotypes from western Kenya. African J Biotechnol 8(18):4325-4332
18 Barrett RL, Roalson EH, Ottewell K, Byrne M, Govindwar SP, Yadav SR, Tammboli AS, Gholave AR (2017) Resolving generic boundaries in Indian-Australasian Cleomaceae: Circumscription of Areocleome, Arivela, and Corynandra as distinct genera. Syst Bot 42:694-707; http://doi.org/10.1600/036364417X696401   DOI
19 Cooke CDK (1996) Aquatic and Wetland Plants of India. Oxford University Press, Cambridge
20 Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytoch Bull 19:11-15
21 Sridhar N, Kiran BVS, Sasidhar DT, Kanthal LK (2014) In vitro antimicrobial screening of methanolic extracts of Cleome chelidonii and Cleome gynandra. Bangladesh J Pharmacol 9(2):161-166
22 Stefunova V, Bezo M, Labajova M, Senkova S (2014) Genetic analysis of three Amaranth species using ISSR markers. Emirates J Food Agric 26(1):35-43
23 Tripathi N, Chouhan DS, Saini N, Tiwari S (2012) Assessment of genetic variations among highly endangered medicinal plant Bacopa monnieri (L.) from central India using RAPD and ISSR analysis. 3 Biotech 2(4):327-336
24 Subhash S, Ragan A (2017) Dormancy and in vitro seed germination of Corynandra chelidonii var. pallae (Cleomaceae), an endemic and ethnomedicinal herb. Int J Pharm Biol Sci 7(2):240-244
25 Sumitha V, Gurulakshmi M (2015) Antioxidant and free radical scavenging activity of leaf extracts of Cleome chelidonii. Int J Innovation Pharma 2(3):228-236
26 Thakur J, Dwivedi MD, Sourabh P, Uniyal PL, Pandey AK (2016) Genetic homogeneity revealed using SCoT, ISSR and RAPD markers in micropropagated Pittosporum eriocarpum Royle-an endemic and endangered medicinal plant. PloS one 11(7):e0159050
27 Vijayakumar P (1980) Light and Electron Microscopic Studies of the Seed Coat Characteristics of Cleomaceae (Capparaceae) together with their Taxonomic and Phylogenetic Significance. Ph.D. thesis. Kakatiya University, Warangal
28 Rao VH, Rao VV, Reddy AB, Raju VS (2018) The status assessment of Corynandra viscosa subsp. nagarjunakondensis (Magnoliopsida: Cleomaceae), endemic to Nagarjunakonda, Andhra Pradesh, India. J Threat Taxa 10(9); https://doi.org/10.11609/jott.3798. 10.9.12210-12217   DOI
29 Ying W, Ming K, Hongwen H (2007) Subpopulation genetic structure of a plant panmictic population of Castanea sequinii as revealed by microsatellite markers. Front Biol China 2(2):187-195 https://doi.org/10.1007/s11515-007-0027-1   DOI
30 Prevost A, Wilkinson MJ (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theret App Gen 98(1):107-112; https://doi.org/10.1007/s001220051046   DOI
31 Reddy CS, Raju VS (2001) A new variety of Cleome chelidonii L.f. (Cleomaceae). J Econ Taxon Bot 25(1):217, 218
32 Roalson EH, Hall, JC, Riser II JP, Cardinal-McTeague WM, Cochrane TS, Sytsma KJ (2015) A revision of generic boundaries and nomenclature in the North American Cleomoid clade (Cleomaceae). Phytotaxa 205:129-144
33 Rohela GK, Jogam P, Mir MY, Shabnam AA, Shukla P, Abbagani S, Kamili AN (2020) Indirect regeneration and genetic fidelity analysis of acclimated plantlets through SCoT and ISSR markers in Morus alba L. cv. Chinese white. Biotechnol Rep e00417; https://doi.org/10.1016/j.btre. 2020.e00417   DOI
34 Kimura M, F. Crow JF (1964) The number of alleles that can be maintained in a finite population. Genetics 49(4):725-738
35 Frascaroli E, Schrag TA, Melchinger AE (2013) Genetic diversity analysis of elite European maize (Zea mays L.) inbred lines using AFLP, SSR, and SNP markers reveals ascertainment bias for a subset of SNPs. Theor App Gen 126(1):133-141
36 Gadidasu KK, Murthy EN, Nataraj P, Srinivas K, Babu PA, da Silva JAT, Raju VS, Sadanandam A (2011) ISSR markers reveal genetic polymorphism in two morphological variants of Hyptis suaveolens invasive to India. Med Aromat Plant Sci Biotechnol 5:166-168
37 Jacobs M (1960) Capparidaceae. In: van Steens C.G.G.J. (ed) Flora Malesiana 6: 61-105. Wolters-Noordhoff Publishing, Goningen, Netherlands
38 Jedrzejczyk, I. (2020). Genome size and SCoT markers as tools for identification and genetic diversity assessment in Echinacea genus. Ind Crops Prod 144, 112055; https://doi.org/10.1016/j.indcrop. 2019.112055   DOI
39 Kalia RK, Rai MK, Kalia S, Singh R, Dhawan AK (2011) Microsatellite markers: An overview of the recent progress in plants. Euphytica 177(3):309-334
40 Kudikala H, Jogam P, Sirikonda A, Mood K, Rao AV (2020) In vitro micropropagation and genetic fidelity studies using SCoT and ISSR primers in Annona reticulata L.: An important medicinal plant. Vegetos 33(3):446-457
41 McDermot JM, McDonald, BA (1993) Gene flow in plant pathosystems. Annu Rev Phytopathol 31:353-373
42 Nei M (1973) The theory and estimation of genetic distance In: Morton NE (ed), Genetic Structure of Populations. pp. 45-51. University of Hawaii Press, Honolulu
43 Songsak T, Lockwood GB (2002) Glucosinolates of seven medicinal plants from Thailand. Fitoterapia 73(3):209-216
44 Kherwar D, Usha K, Mithra SVA, Singh B (2018). Microsatellite (SSR) marker assisted assessment of population structure and genetic diversity for morpho-physiological traits in guava (Psidium guajava L.). J Plant Biochem Biotechnol 27(3):284-292; https://link.springer.com/article/10.1007/s13562-017-0438-2
45 Sadhu S, Jogam P, Thampu RK, Abbagani S, Penna S, Peddaboina V (2020) High efficiency plant regeneration and genetic fidelity of regenerants by SCoT and ISSR markers in chickpea (Cicer arietinum L.). Plant Cell Tiss Organ Cult 141:465-477
46 Somkuwar SR, Gadpayale JV, Chaturvedi A (2018) Corynandra chelidonii var. pallai (Reddy & Raju) V.S. Raju, ined. - New addition to the angiospermic flora of Maharashtra, India. IJRBAT, Issue (VI) Spl. Issue 3:38-41
47 Parimalakrishnan S, Dey A, Smith AA, Manavalan R (2007) Evaluation of antiinflammatory, antinociceptive and antipyretic effects of methanol extract of Cleome chelidonii. Int J Biol Chem Sci 1(3):223-228
48 Rohlf FJ (2000) NTSYS 2.1: Numerical Taxonomic and Multivariate Analysis System. Exeter Software, New York
49 Shekhawat JK, Rai MK, Shekhawat NS, Kataria V (2018) Start codon targeted (SCoT) polymorphism for evaluation of genetic diversity of wild population of Maytenus emarginata. Ind Crops Prod 122:202-208
50 Sirikonda A, Jogam P, Ellendula R, Kudikala H, Mood K, Allini VR (2020) In vitro micropropagation and genetic fidelity assesment in Flemingia macrophylla (Willd.) Merr: an ethnomedicinal plant. Vegetos 33:286-295