• 제목/요약/키워드: Korean Construction Machinery

검색결과 525건 처리시간 0.022초

곤돌라형 외벽 유지관리 로봇의 이동/작업 메커니즘 및 플랫폼 개발 (Development of Gondola-type Building Management Robot Platform and Mechanism for Moving/Tasking on Building Outer-wall)

  • 함영복;박성재
    • 한국정밀공학회지
    • /
    • 제30권4호
    • /
    • pp.375-382
    • /
    • 2013
  • Down through the years, human needs and desires have required a robot system to work at hazardous environments instead. Current painting task is costly and laborious, and it exposes workers to significant health and safety risks. Automation system offers potential improvement in this area and is especially well suited to the outer-wall painting tasks in concrete structures. This paper introduces the result of gondola-type building management robot(G-BMR) platform and mechanism for moving/tasking on building outer-wall for the outer-wall painting. Its technical and economic feasibility are conducted, and it is concluded that developing G-BMR is physically and economically feasible in this research. And we discuss about the future of G-BMR and automation in construction field.

초음파 진동이 알루미늄 합금의 마찰 마모 특성에 미치는 영향 (Effect of Ultrasonic Vibration on the Friction and Wear Characteristics of Aluminum Alloy)

  • 박재남;이철희
    • Tribology and Lubricants
    • /
    • 제34권4호
    • /
    • pp.132-137
    • /
    • 2018
  • Ultrasonic waves are used in various applications in multiple devices, sensors, and high-power machinery, such as processing machines, welders, and cleaners, because the acoustic vibration frequencies are above the human audible frequency range. In ultrasonic machining, electrical energy at a high frequency of 20 kHz or more is converted into mechanical vibration by a vibrator and an amplifier. This technique allows instantaneous separation between a tool and a workpiece during machining, machining by pulse impulse force at the time of re-contact and minimizes the minute elastic deformations of the workpiece and machine tools due to the cutting effect. The Al7075 alloy used in this study is a typical aluminum alloy with superior strength that is mainly used in aircrafts, automobiles, and sporting goods. To investigate the optimal conditions for machining aluminum alloy using ultrasonic vibration, the present experiment utilized the Taguchi orthogonal array method, and the coefficient of friction was analyzed using the characteristics of the Taguchi technique. In ultrasonic friction and abrasion tests, the changes in the friction coefficient were measured in the absence of ultrasonic vibrations and at 28 kHz and 40 kHz. As a result, the most considerable influence on the friction coefficient was found to be the normal load, and the frequency of ultrasonic vibrations increases, the coefficient of friction increases. It was thus confirmed that the amount of wear increases when ultrasonic vibration is applied.

THE DEVELOPMENT OF THE NARROW GAP MULTI-PASS WELDING SYSTEM USING LASER VISION SYSTEM

  • Park, Hee-Chang;Park, Young-Jo;Song, Keun-Ho;Lee, Jae-Woong;Jung, Yung-Hwa;Luc Didier
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.706-713
    • /
    • 2002
  • In the multi-pass welding of pressure vessels or ships, the mechanical touch sensor system is generally used together with a manipulator to measure the gap and depth of the narrow gap to perform seam tracking. Unfortunately, such mechanical touch sensors may commit measuring errors caused by the eterioration of the measuring device. An automation system of narrow gap multi-pass welding using a laser vision system which can track the seam line of narrow gap and which can control welding power has been developed. The joint profile of the narrow gap, with 250mm depth and 28mm width, can be captured by laser vision camera. The image is then processed for defining tracking positions of the torch during welding. Then, the real-time correction of lateral and vertical position of the torch can be done by the laser vision system. The adaptive control of welding conditions like welding Currents and welding speeds, can also be performed by the laser vision system, which cannot be done by conventional mechanical touch systems. The developed automation system will be adopted to reduce the idle time of welders, which happens frequently in conventional long welding processes, and to improve the reliability of the weld quality as well.

  • PDF

이동식 임목파쇄기 시공능력 산정 개선방안 (The Estimating Method of Construction Workable-quantity per Unit Time for Tub Grinder)

  • 안방률;태용호
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 춘계 학술논문 발표대회
    • /
    • pp.169-171
    • /
    • 2012
  • Although work-efficiency of construction machinery is a critical factor for estimating its workable-quantity per unit time, the coefficient figure table presented in the Poom-Sam that is used for Construction Cost Estimation of public sectors in Korea is very subjective for practical usage. In order to suggest objective work-coefficient table for a Tub Grinder, domestic and overseas documentary records were investigated and on-going construction sites were also visited. The research found that the table can be revised by means of detailing down by several factors. The research will be the foundation for applying the rapid development of Construction Equipment and technology to the appropriate cost estimations and the ground work of related studies.

  • PDF

양어장 방류수를 이용한 해양소수력발전소 구축에 관한 연구 (Construction of Marine Small Hydro Power Plant using Discharge Water of Fish Farm)

  • 황영철;최영도
    • 한국유체기계학회 논문집
    • /
    • 제16권5호
    • /
    • pp.11-17
    • /
    • 2013
  • This study is aimed to construct a marine small hydro power plant using discharge water of fish farm in Jeju Haengwon-ri. The difference of design methods between marine small hydro power plant and land small hydro power plant is to consider the tides. Moreover, ground condition should be examined because gushout sea water comes out from the ground at high tide in Jeju as the ground of Jeju beach consists of basalt stone. From the field test of the turbine generator after construction of the power plant, output power and efficiency of the turbine generator shows good conformance to the required conditions.

고정 커플링의 오프셋을 갖는 발전용 가스터빈-발전기의 동적 응답해석 (Dynamic Response Analysis of a Heavy Duty Gas Turbine-Generator with Rigid Coupling Offset)

  • 하진웅;정대석
    • 한국유체기계학회 논문집
    • /
    • 제17권4호
    • /
    • pp.70-75
    • /
    • 2014
  • In this paper a analysis method is presented to obtain the steady state dynamic response from the finite element based equations of a rotor-bearing system with initial deflection. The method has been applied to analyze the dynamic response of the two-shaft rotor-bearing system with rigid coupling offset in a heavy duty gas turbine-generator. Bumps in the dynamic response of each rotor system have been observed at each critical speed due to the effect of initial deflection for rigid coupling offset. And, the dynamic responses have been shown to reduce for operating condition changes from cold to hot.

이산요소법을 활용한 점성토 환경에서의 작업 속도에 따른 몰드보드 플라우 견인력 예측 (Prediction of Draft Force of Moldboard Plow according to Travel Speed in Cohesive Soil using Discrete Element Method)

  • 배보민;정대위;류동형;안장현;최세오;김연수;김용주
    • 드라이브 ㆍ 컨트롤
    • /
    • 제20권4호
    • /
    • pp.71-79
    • /
    • 2023
  • In the field of agricultural machinery, various on-field tests are conducted to measure design load for optimal design of agricultural equipment. However, field test procedures are costly and time-consuming, and there are many constraints on field soil conditions due to weather, so research on utilizing simulation to overcome these shortcomings is needed. Therefore, this study aimed to model agricultural soils using discrete element method (DEM) software. To simulate draft force, predictions are made according to travel speed and compared to field test results to validate the prediction accuracy. The measured soil properties are used for DEM modeling. In this study, the soil property measurement procedure was designed to measure the physical and mechanical properties. DEM soil model calibration was performed using a virtual vane shear test instead of the repose angle test. The DEM simulation results showed that the prediction accuracy of the draft force was within 4.8% (2.16~6.71%) when compared to the draft force measured by the field test. In addition, it was confirmed that the result was up to 72.51% more accurate than those obtained through theoretical methods for predicting draft force. This study provides useful information for the DEM soil modeling process that considers the working speed from the perspective of agricultural machinery research and it is expected to be utilized in agricultural machinery design research.