• Title/Summary/Keyword: Korean Code

Search Result 11,506, Processing Time 0.037 seconds

Development of easy-to-use interface for nuclear transmutation computing, VCINDER code

  • Kum, Oyeon
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.25-34
    • /
    • 2018
  • The CINDER code has about 60 years of development history, and is thus one of the world's best transmutation computing codes to date. Unfortunately, it is complex and cumbersome to use. Preparing auxiliary input files for activation computation from MCNPX output and executing them using Perl script (activation script) is the first difficulty, and separation of gamma source computing script (gamma script), which analyzes the spectra files produced by CINDER code and creates source definition format for MCNPX code, is the second difficulty. In addition, for highly nonlinear problems, multiple human interventions may increase the possibility of errors. Postprocessing such as making plots with large text outputs is also time consuming. One way to improve these limitations is to make a graphical user interface wrapper that includes all codes, such as MCNPX and CINDER, and all scripts with a visual C#.NET tool. The graphical user interface merges all the codes and provides easy postprocessing of graphics data and Microsoft office tools, such as Excel sheets, which make the CINDER code easy to use. This study describes the VCINDER code (with visual C#.NET) and gives a typical application example.

SOS-Net for Generattion of PLC Program (PLC 프로그램 생성을 위한 SOS-Net)

  • Ko, Min-Suk;Hong, Sang-Hyun;Wang, Gi-Nam;Park, Sang-Cheul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.1
    • /
    • pp.60-68
    • /
    • 2009
  • Because of the reduced product life-cycle, industries are making an effort to bring down the process planning time. In the traditional approach, we have to analyze established process planning, then design the time chart based on process information and drawing the formal time chart such as SOP(sequence of operation). Thereafter, it will be converted to PLC code that is a time consuming and redundant job. Similarly, Industrial automated process uses PLC Code to control the factory; however, control information and control code(PLC code) are difficult to understand. Hence, industries prefer writing new control code instead of using the existing one. It shows the lack of information reusability in the existing process planning. As a result, to reduce this redundancy and lack of reusability, we propose SOS-Net modeling method. Unlike past stabilized process planning that is rigid to any change; our proposed SOS-Net modeling method is more adaptable to the new changes. The SOS-Net model is easy to understand and easy to convert into PLC Code accordingly. Therefore, we can easily modify the control information and reuse it for new process planning. The proposed model plays an intermediary role between process planning and PLC code generation. It can reduce the process planning and implementation time as well as cost.

Logic implementation of HDB3 Codec (HDB3 Codec의 로직 구현)

  • Eom, Joon;Kim, Young-kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.397-399
    • /
    • 2017
  • The HDB3 code, a type of line code, is a data coding method used for digital data transmission. It is used to remove the DC wander on the transmission line which occurs when the DC component data is transmitted continuously. The military tactical communication network uses HDB3 code for data transmission and develops equipment using commercial HDB3 Codec IC. Because it is operated for more than 10 years due to the characteristics of military equipment, if a failure occurs in the equipment, the equipment can not be repaired due to the discontinuance of the part, so that the entire equipment may not be used. In this paper, we implement the HDB3 Codec as a logic to solve this problem and verify that the performance is equivalent to that of commercial parts.

  • PDF

DEVELOPMENT OF MARS-GCR/V1 FOR THERMAL-HYDRAULIC SAFETY ANALYSIS OF GAS-COOLED REACTOR SYSTEMS

  • LEE WON-JAE;JEONG JAR-JUN;LEE SEUNG-WOOK;CHANG JONGHWA
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.587-594
    • /
    • 2005
  • In an effort to develop a thermal-hydraulic (TH) safety analysis code for Gas-cooled Reactors (GCRs), the MARS code, which was primarily developed for TH analysis of water reactor systems, has been extended here for application to GCRs. The modeling requirements of the system code were derived from a review of major processes and phenomena that are expected to occur during normal and accident conditions of GCRs. Models fur code improvement were then identified through a review of existing MARS code capability. Among these, the following priority models necessary fur the analysis of limiting high and low pressure conduction cooling events were evaluated and incorporated in MARS-GCR/V1 : 1) Helium (He) and Carbon Dioxide ($CO_2$) as main system fluids, 2) gas convection heat transfer, 3) radiation heat transfer, and 4) contact heat transfer models. Each model has been assessed using various conceptual problems for code-to-code benchmarks and it was demonstrated that MARS-GCR/V1 is capable of capturing the relevant phenomena. This paper describes the models implemented in MARS-GCR/V1 and their verification and validation results.

Development of the Program(FDS2EXODUS) for Generating Hazard condition file of Building-EXODUS code based on the FDS Fire-simulation Data (화재모사전용 FDS code의 계산값을 이용하여 피난해석 BuildingEXODUS code의 피난의 환경조건 파일을 생성하는 프로그램(FDS2EXODUS) 개발)

  • Kim, H.B.;Jang, Y.J.;Jung, W.S.;Park, W.H.;Lee, D.H.
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.570-575
    • /
    • 2009
  • In this paper shows the development of the Program(FDS2EXODUS) for Generating Hazard condition file of BuildingEXODUS code based on the FDS Fire-simulation Data. The program were applied with numerical method to translate from FDS to BuildingEXODUS. Using both single or multi block meshes of FDS get to be possible. For application of fire effect, the fire data were loaded directly to BuildingEXODUS in the case of FDS code with using this Program(FDS2EXODUS). It was very convenient to input to BuildingEXODUS and could be reduced the procedure of egress simulation from fire disaster.

  • PDF

Class Code Generation method for Component model Construction (컴포넌트 모델구축을 위한 클래스 코드 자동생성 방법)

  • Lim, Keun;Lee, Ki-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.5
    • /
    • pp.69-76
    • /
    • 2008
  • In this thesis, we implemented the prototype system for the class code generator based on consistent code generation process and standard type, the class to be component unit. Particularly, we proposed relationship rule to solve the difficult problem by the object-oriented language to association and aggregation between classes based on component, through this method we can make to consistent code generation standard. Also it is adopted to component model construction which is generated code using code generation, and it can be basic assembly and deployment of business components to reusable target in developing application system.

  • PDF

Validation of the fuel rod performance analysis code FRIPAC

  • Deng, Yong-Jun;Wei, Jun;Wang, Yang;Zhang, Bin
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1596-1609
    • /
    • 2019
  • The fuel rod performance has great importance for the safety and economy of an operating reactor. The fuel rod performance analysis code, which considers the thermal-mechanical response and irradiation effects of fuel rod, is usually developed in order to predict fuel rod performance accurately. The FRIPAC (${\underline{F}}uel$ ${\underline{R}}od$ ${\underline{I}}ntegral$ ${\underline{P}}erformance$ ${\underline{A}}nalysis$ ${\underline{C}}ode$) is such a fuel rod performance analysis code that has been developed recently by China Nuclear Power Technology Research Institute Co. Ltd. The code aims at the computational simulation of the Pressurized Water Reactor fuel rod behavior for both steady-state and power ramp condition. A brief overview of FRIPAC is presented including the computational framework and the main behavioral models. Validation of the code is also presented and it focuses on the fuel rod behavior including fuel center temperature, fission gas release, rod internal pressure/internal void volume, cladding outer diameter and cladding corrosion thickness. The validation is based on experimental data from several international projects. The validation results indicate that FRIPAC is an accurate and reliable fuel rod performance analysis code because of the satisfactory comparison results between the experimental measurements and the code predictions.

The influence of the water ingression and melt eruption model on the MELCOR code prediction of molten corium-concrete interaction in the APR-1400 reactor cavity

  • Amidu, Muritala A.;Addad, Yacine
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1508-1515
    • /
    • 2022
  • In the present study, the cavity module of the MELCOR code is used for the simulation of molten corium concrete interaction (MCCI) during the late phase of postulated large break loss of coolant (LB-LOCA) accident in the APR1400 reactor design. Using the molten corium composition data from previous MELCOR Simulation of APR1400 under LB-LOCA accident, the ex-vessel phases of the accident sequences with long-term MCCI are recalculated with stand-alone cavity package of the MELCOR code to investigate the impact of water ingression and melt eruption models which were hitherto absent in MELCOR code. Significant changes in the MCCI behaviors in terms of the heat transfer rates, amount of gases released, and maximum cavity ablation depths are observed and reported in this study. Most especially, the incorporation of these models in the new release of MELCOR code has led to the reduction of the maximum ablation depth in radial and axial directions by ~38% and ~32%, respectively. These impacts are substantial enough to change the conclusions earlier reached by researchers who had used the older versions of the MELCOR code for their studies. and it could also impact the estimated cost of the severe accident mitigation system in the APR1400 reactor.

Development of dynamic motion models of SPACE code for ocean nuclear reactor analysis

  • Kim, Byoung Jae;Lee, Seung Wook
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.888-895
    • /
    • 2022
  • Lately, ocean nuclear power plants have attracted attention as one of diverse uses of nuclear power plants. Because ocean nuclear power plants are movable or transportable, it is necessary to analyze the thermal hydraulics in a moving frame of reference, and computer codes have been developed to predict thermal hydraulics in large moving systems. The purpose of this study is to incorporate a three dimensional dynamic motion model into the SPACE code (Safety and Performance Analysis CodE) so that the code is able to analyze thermal hydraulics in an ocean nuclear power plant. A rotation system that describes three-dimensional rotations about an arbitrary axis was implemented, and modifications were made to the one-dimensional momentum equations to reflect the rectilinear and rotational acceleration effects. To demonstrate the code's ability to solve a problem utilizing a rotational frame of reference, code calculations were conducted on various conceptual problems in the two-dimensional and three-dimensional pipeline loops. In particular, the code results for the three-dimensional pipeline loop with a tilted rotation axis agreed well with the multi-dimensional CFD results.

Development of TREND dynamics code for molten salt reactors

  • Yu, Wen;Ruan, Jian;He, Long;Kendrick, James;Zou, Yang;Xu, Hongjie
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.455-465
    • /
    • 2021
  • The Molten Salt Reactor (MSR), one of the six advanced reactor types of the 4th generation nuclear energy systems, has many impressive features including economic advantages, inherent safety and nuclear non-proliferation. This paper introduces a system analysis code named TREND, which is developed and used for the steady and transient simulation of MSRs. The TREND code calculates the distributions of pressure, velocity and temperature of single-phase flows by solving the conservation equations of mass, momentum and energy, along with a fluid state equation. Heat structures coupled with the fluid dynamics model is sufficient to meet the demands of modeling MSR system-level thermal-hydraulics. The core power is based on the point reactor neutron kinetics model calculated by the typical Runge-Kutta method. An incremental PID controller is inserted to adjust the operation behaviors. The verification and validation of the TREND code have been carried out in two aspects: detailed code-to-code comparison with established thermal-hydraulic system codes such as RELAP5, and validation with the experimental data from MSRE and the CIET facility (the University of California, Berkeley's Compact Integral Effects Test facility).The results indicate that TREND can be used in analyzing the transient behaviors of MSRs and will be improved by validating with more experimental results with the support of SINAP.