• Title/Summary/Keyword: Korea temperature

Search Result 31,806, Processing Time 0.054 seconds

The Electrical Resistivity of a SiCw/Al Alloy Composite with Temperature

  • Kim Byung-Geol;Dong Shang-Li;Park Su-Dong;Lee Hee-Woong
    • Korean Journal of Materials Research
    • /
    • v.14 no.7
    • /
    • pp.489-493
    • /
    • 2004
  • The electrical property of MMC is essentially important to some applications such as power transmission lines and cables, electronic and electrical components as well as electromagnetic shielding equipments. The behavior of electrical resistivity of $SiC_{w}/Al$ alloy composites under as-extruded and annealed conditions has been investigated within the temperature range from room temperature to $450^{\circ}C$. It can be seen that within entire temperature range, the electrical resistivity of composites was higher than that of an unreinforced matrix alloy under the same condition of either as-extrusion or annealing. The temperature dependence of both exhibited positive incline like a typical metal. The variation of electrical resistivity of an unreinforced matrix alloy with temperature from ambient temperature to $450^{\circ}C$ was nearly monotonous, while those of composites increased monotonously at low temperature and rose to a high level after about $250^{\circ}C or 275^{\circ}C$. The difference of these temperature dependences on electrical resistivity can be interpreted as qualitatively the interfaces of $SiC_{w}$ fibers and matrix, where act as nucleation sites.

Transcript Analysis of Wheat WAS-2 Gene Family under High Temperature Stress during Ripening Period

  • Ko, Chan Seop;Kim, Jin-Baek;Hong, Min Jeong;Kim, Kyeong Hoon;Seo, Yong Weon
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.363-380
    • /
    • 2018
  • Wheat is frequently exposed to high temperature during anthesis and ripening period, which resulted in yield loss and detrimental end-use-quality. The transcriptome analysis of wheat under high temperature stress during the early stage of the grain filling period was undertaken. Three expression patterns of differentially expressed genes (DEGs) during grain filling period were identified. The DEGs of seed storage protein and starch-branching enzyme showed continuous increases in their expressions during high temperature stress, as well as during the recovery period. The activities of the enzymes responsible for the elimination of antioxidants were significantly affected by exposure to high temperature stress. Only the WAS-2 family genes showed increased transcription levels under high temperature stress in dehulled spikelets. The relative transcription levels for sub-genome specific WAS-2 genes suggested that WAS-2 genes reacted with over-expression under high temperature stress and decreased back to normal expression during recovery. We propose the role of WAS-2 as a protective mechanism during the stage of grain development under high temperature in spikelets.

Seasonal Prediction of Korean Surface Temperature in July and February Based on Arctic Sea Ice Reduction

  • Choi, Wookap;Kim, Young-Ah
    • Atmosphere
    • /
    • v.32 no.4
    • /
    • pp.297-306
    • /
    • 2022
  • We examined potential seasonal prediction of the Korean surface temperature using the relationships between the Arctic Sea Ice Area (SIA) in autumn and the temperature in the following July and February at 850 hPa in East Asia (EA). The Surface Air Temperature (SAT) over Korea shows a similar relationship to that for EA. Since 2007, reduction of autumn SIA has been followed by warming in Korea in July. The regional distribution shows strong correlations in the southern and eastern coastal areas of Korea. The correlations in the sea surface temperature shows the maximum values in July around the Korean Peninsula, consistent with the coastal regions in which the maximum correlations in the Korean SAT are seen. In February, the response of the SAT to the SIA is the opposite of that for the July temperature. The autumn sea ice reduction is followed by cooling over Korea in February, although the magnitude is small. Cooling in the Korean Peninsula in February may be related to planetary wave-like features. Examining the autumn Arctic sea ice variation would be helpful for seasonal prediction of the Korean surface temperature, mostly in July and somewhat in February. Particularly in July, the regression line would be useful as supplementary information for seasonal temperature prediction.

A Study on Geothermal Evaluation of Alluvium and Riverbed using Thermal Line Temperature Monitoring (다중 온도 모니터링을 통한 충적층 및 하상의 지열특성 평가 연구)

  • Jung, Woo-Sung;Kim, Hyoung-Soo;Park, Dong-Soon;Ahn, Young-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.171-178
    • /
    • 2006
  • In advanced countries, state-of-the-art temperature monitoring technique is widely used for effective use of geothermal resources. But these kind of modern tools such as Thermal Line Sensor has not been applied to find geothermal characteristics of alluvium and riverbed in domestic area. In this research, state-of-the-art thermal line temperature sensor monitoring was introduced. And long term field test using this type of sensor was performed to find geothermal characteristics of alluvium and riverbed and evaluate the availability for heat energy source. As a result, temperature monitoring technique through thermal line sensor was very effective to obtain basic geothermal information of alluvium deposit and riverbed. Also, it was found that the groundwater temperature phase showed its potential of utilization as a energy source of heat pump. It is estimated that further study shows a specific corelation between temperature monitoring data and its availability as a energy source.

  • PDF

Biochemical Adaptation of Pinus pumila on Low Temperature in Mt. Seorak, Korea

  • Kim Chan-Soo;Han Sim-Hee;Lee Wi-Young;Lee Jae-Cheon;Park Young-Ki;Oh Chang-Young
    • Plant Resources
    • /
    • v.8 no.3
    • /
    • pp.217-224
    • /
    • 2005
  • We tested the hypothesis that alpine plants have special physiological and biochemical mechanisms in addition to their structural adaptation in order to survive under extreme conditions. The photosynthetic organs of Pinus pumila were used to examine the seasonal changes in sugar concentration, antioxidative enzyme, and lipid peroxidation. The concentrations of sucrose, glucose, fructose and reducing sugar were the highest in the leaves in April. But sugar contents in buds and inner barks did not respond sensitively on temperature change. Meanwhile superoxide dismutase (SOD) activity responded sensitively on the change of temperature and SOD in all tissues maintained high activity in April. Meanwhile anthocyanin content increased rapidly in June but the increase of anthocyanin content was not enough to prevent their tissues from the damage by the exposure of high temperature or other stress. In conclusion, under low temperature condition, P. pumila increased the concentration of soluble sugars and SOD activity in their tissues in order to overcome extreme environmental condition. But in summer, these stress defense system against high temperature might be disturbed slightly. This results in the increase of malondialdehyde (MDA) contents in three tissues by lipid peroxidation.

  • PDF

Measurement and Analysis of Temperature Dependence for Current-Voltage Characteristics of Homogeneous Emitter and Selective Emitter Crystalline Silicon Solar Cells (Homogeneous 에미터와 Selective 에미터 결정질 실리콘 태양전지의 온도에 따른 전류-전압 특성 변화 측정 및 분석)

  • Nam, Yoon Chung;Park, Hyomin;Lee, Ji Eun;Kim, Soo Min;Kim, Young Do;Park, Sungeun;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Korean Journal of Materials Research
    • /
    • v.24 no.7
    • /
    • pp.375-380
    • /
    • 2014
  • Solar cells exhibit different power outputs in different climates. In this study, the temperature dependence of open-circuit voltage(V-oc), short-circuit current(I-sc), fill factor(FF) and the efficiency of screen-printed single-crystal silicon solar cells were studied. One group was fabricated with homogeneously-doped emitters and another group was fabricated with selectively-doped emitters. While varying the temperature (25, 40, 60 and $80^{\circ}C$), the current-voltage characteristics of the cells were measured and the leakage currents extracted from the current-voltage curve. As the temperature increased, both the homogeneously-doped and selectively-doped emitters showed a slight increase in I-sc and a rapid degradation of V-oc. The FF and efficiency also decreased as temperature increased in both groups. The temperature coefficient for each factor was calculated. From the current-voltage curve, we found that the main cause of V-oc degradation was an increase in the intrinsic carrier concentration. The temperature coefficients of the two groups were compared, leading to the idea that structural effects could also affect the temperature dependence of current-voltage characteristics.

Quality Changes of Dried Persimmons to the Storage Temperature and Packaging Materials (포장재과 저장온도에 따른 곶감의 저장 중 품질변화)

  • Lee, Seon-Ah;Park, Hyung-Woo;Kim, Sang-Hee;Kim, Yoon-Ho
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.13 no.1
    • /
    • pp.1-4
    • /
    • 2007
  • The dried persimmons is produced fungi and develop browning, hardening in circulation at normal temperature. To resolve such problem in commercial value preservation, the research was conducted to measure the quality changes of dried persimmons packagings at low temperature($0^{\circ}C$) during 160 days storage and the normal temperature($15^{\circ}C$) during 100 days storage. The rate of weight loss, fungi, browning, hardening were changed a little in the low temperature($0^{\circ}C$) storage and N/LDPE.

  • PDF

A Study on the Vertical Temperature Difference of Steel Box Girder Bridge by Field Measurement (실측에 의한 강박스거더교의 상하 온도차에 대한 연구)

  • Lee, Seong-Haeng;Park, Young-Chun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.545-551
    • /
    • 2018
  • For domestic application of the temperature gradient model proposed by foreign design standards, a specimen of steel box girder bridge was fabricated with the following dimensions: 2.0 m width, 2.0 m height and 3.0 m length. Temperature was measured using 24 temperature gauges during the summer of 2016. The reliability of the measured data was verified by comparing the measured air temperature with the ambient air temperature of the Korea Meteorological Administration. Of the measured gauges, four temperature gauges that can be compared with the temperature difference of the Euro code were selected and used to analyze the distribution of the measured temperatures at each point. The reference atmospheric temperature for the selection of the maximum temperature difference was determined by considering the standard error. Maximum and minimum temperatures were calculated from the four selected points and the resulting temperature difference was calculated. The model for the temperature difference in the steel box girder bridge was shown by graphing the temperature difference. Compared to the temperature distribution of the Euro code, the presented temperature difference model showed a temperature difference of $0.9^{\circ}C$ at the top and of $0.3^{\circ}$ to $0.4^{\circ}C$ at the intermediate part. These results suggested that the presented model could be considered relatively similar to the Euro code The calculated standard error coefficient was 2.71 to 2.84 times the standard error and represents a range of values. The proposed temperature difference model may be used to generate basic data for calculating the temperature difference in temperature load design.

Measurement of the Moderator Temperature Coefficient of Reactivity for Pressurized Water Reactors

  • Yu, Sung-Sik;Kim, Se-Chang;Na, Young-Whan;Kim, H. S.;J. Y. Doo;Kim, D. K.;S. W. Long
    • Nuclear Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.488-499
    • /
    • 1997
  • The measurements of the moderator temperature coefficient (MTC) are performed to demonstrate that the calculational model produces results that are consistent with the measurements. Since negative MTC is also a technical specification value that may limit the cycle length, it is important to measure it as accurately as possible. In this report, preferred choice of test method depending on the time in cycle, best power indication and temperature definition in MTC calculation were determined based on the MTC test results taken during initial startup testing and at 2/3 cycle burnup in the Yonggwang nuclear power plant. The results show that the ratio and rodded methods provided good agreement with the predictions during initial startup testing. However, near end-of-cycle the depletion method gives better results, and so is suggested to be used in the MTC measurements at 2/3 cycle burnup. The use of primary Delta T power as a power indicator in the MTC calculations is highly advisable since it responds with good consistent results very quickly to changes unlike secondary calorimetric power. For the appropriate temperature definitions used in the MTC calculations, it is considered that the arithmetic average temperature measured simply by inlet and outlet thermocouples is preferred. Although volumetric average temperature provides better results, the improvement is not sufficient to compensate for the simplicity of calculations by arithmetic average temperature.

  • PDF

A Study on Prediction of Temperature and Humidity for Estimation of Cooling Load (냉방부하 추정을 위한 온도와 습도 예측에 관한 연구)

  • Yoo, Seong-Yeon;Lee, Je-Myo;Han, Kyou-Hyun;Han, Seung-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.5
    • /
    • pp.394-402
    • /
    • 2007
  • To estimate the cooling load for the following day, outdoor temperature and humidity are needed in hourly base. But the meteorological administration forecasts only maximum and minimum temperature. New methodology is proposed for predicting hourly outdoor temperature and humidity by using the forecasted maximum and minimum temperature. The correlations for normalized outdoor temperature and specific humidity has been derived from the weather data for five years from 2001 to 2005 at Seoul, Daejeon and Pusan. The correlations for normalized temperature are independent of date, while the correlations for specific humidity are linearly dependent on date. The predicted results show fairly good agreement with the measured data. The prediction program is also developed for hourly outdoor dry bulb temperature, specific humidity, dew point, relative humidity, enthalpy and specific volume.