• 제목/요약/키워드: Korea precipitation

검색결과 3,740건 처리시간 0.034초

동아시아 및 남한 지역에서의 Integrated MultisatellitE Retrievals for GPM (IMERG) 일강수량의 지상관측 검증 (Evaluation of Daily Precipitation Estimate from Integrated MultisatellitE Retrievals for GPM (IMERG) Data over South Korea and East Asia)

  • 이주원;이은희
    • 대기
    • /
    • 제28권3호
    • /
    • pp.273-289
    • /
    • 2018
  • This paper evaluates daily precipitation products from Integrated Multisatellite Retrievals for Global Precipitation Measurement (IMERG), Tropical Rainfall Measuring Mission Multisatellite (TRMM) Precipitation Analysis (TMPA), and the Climate Prediction Center Morphing Method (CMORPH), validated against gauge observation over South Korea and gauge-based analysis data East Asia during one year from June 2014 to May 2015. It is found that the three products effectively capture the seasonal variation of mean precipitation with relatively good correlation from spring to fall. Among them, IMERG and TMPA show quite similar precipitation characteristics but overall underestimation is found from all precipitation products during winter compared with observation. IMERG shows reliably high performance in precipitation for all seasons, showing the most unbiased and accurate precipitation estimation. However, it is also noticed that IMERG reveals overestimated precipitation for heavier precipitation thresholds. This assessment work suggests the validity of the IMERG product for not only seasonal precipitation but also daily precipitation, which has the potential to be used as reference precipitation data.

한국 강수량의 연 변동과 중국 및 일본 강수량과의 비교 연구 (Interannual Variations of the Precipitation in Korea and the Comparison with Those in China and Japan)

  • Jo, Wan-Kuen;Weisel, C.P.
    • 한국환경과학회지
    • /
    • 제4권4호
    • /
    • pp.345-356
    • /
    • 1995
  • Examining the precipitation data collected during the period from 1960 to 1993, we found that Taegu Station represents an optimum station for explaining the interannual variations of the precipitation in Korea. Using the variations derived from Taegu, the secular trends of the precipitation in Korea have been studied. It was 삽so found that the interannual variations of summer monsoon precipitation are consistent with those of the annual precipitation. To explore the interannual variations of the summer monsoon precipitation, comparisons of the summer precipitation in Korea with that in China and Japan were made. The results of the empirical orthogonal function analysis showed that Korea, the Yangtze River and Huaihe River valley, and the south Japan are all located in the same climate system during summer. The detailed analysis was carried out on the comparison of the summer precipitation in Korea with that in the eastern part of the the mainland China. We found that the correlation pattern is similar to the East Asia/pacific pattern. The probable effects of the sea surface temperature on the precipitation in Korea were also discussed. Key Words : Precipitation in Korea, rainy seasons in East Asia, monsoon precipitation, interannual variations.

  • PDF

56년간 한반도 강수 및 풍속의 극값 변화 (The Variation of Extreme Values in the Precipitation and Wind Speed During 56 Years in Korea)

  • 최의수;문일주
    • 대기
    • /
    • 제18권4호
    • /
    • pp.397-416
    • /
    • 2008
  • This study investigates a long-term variation of the annual extreme value for the instantaneous wind speed and the daily precipitation during 56 years (1951-2006) in Korea. Results show that there is a uptrend for both wind and precipitation extreme records, although regional trends are different from overall pattern in some places, particularly for wind speed. The estimated linear trends are 230 mm/56 yr in the daily precipitation and $15ms^{-1}$/56 yr in the maximum instantaneous wind speed. For precipitation, other indexes such as total annual precipitation, the number of extreme precipitation event, and precipitation intensity have dramatically increased as well, while there has been a clear downtrend for the number of strong wind events (> $14ms^{-1}$). It is found that the minimum surface pressure recorded during typhoon attacks in Korea tends to be decreasing, about 10 hPa/56 yr. This partly explains why the extreme values in the precipitation are increasing in Korea.

엘니뇨 발달기 한반도 및 동아시아 가을 강수량 변동 (The Fall Precipitation Variation during the Development of El Nino over East Asia including Korea)

  • 오현택;권원태;신임철;박이형
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2004년도 학술발표회
    • /
    • pp.1247-1250
    • /
    • 2004
  • The amount of precipitation during El Nino over Korea increases in Summer and Winter. However, it decreases in Fall, and exhibits not much change in Spring. Especially, the amount of precipitation during September of El Nino year is much less than that of the September of non-El Nino year. The amount of precipitation during El Nino year of October and November shows similar amount of precipitation during non-El Nino year of the same period. The reason for decreasing precipitation in September is related to the weakening of the 2nd rainy season during the development of El Nino over East Asia including Korea. Insufficiency of fall precipitation during El Nino year influences drought in Spring for next year.

  • PDF

Relative contributions of weather systems to the changes of annual and extreme precipitation with global warming

  • Utsumi, Nobuyuki;Kim, Hyungjun;Kanae, Shinjiro;Oki, Taikan
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.234-234
    • /
    • 2015
  • The global patterns of annual and extreme precipitation are projected to be altered by climate change. There are various weather systems which bring precipitation (e.g. tropical cyclone, extratropical cyclone, etc.). It is possible in some regions that multiple weather systems affect the changes of precipitation. However, previous studies have assessed only the changes of precipitation associated with individual weather systems. The relative contributions of the weather systems to the changes of precipitation have not been quantified yet. Also, the changes of the relative importance of weather systems have not been assessed. This study present the quantitative estimates of 1) the relative contributions of weather systems (tropical cyclone (TC), extratropical cyclone (ExC), and "others") to the future changes of annual and extreme precipitation and 2) the changes of the proportions of precipitation associated with each weather system in annual and extreme precipitation based on CMIP5 generation GCM outputs. Weather systems are objectively detected from twelve GCM outputs and six models are selected for further analysis considering the reproducibility of weather systems. In general, the weather system which is dominant in terms of producing precipitation in the present climate contributes the most to the changes of annual and extreme precipitation in each region. However, there are exceptions for the tendency. In East Asia, "others", which ranks the second in the proportion of annual precipitation in present climate, has the largest contribution to the increase of annual precipitation. It was found that the increase of the "others" annual precipitation in East Asia is mainly explained by the changes of that in summer season (JJA), most of which can be regarded as the summer monsoon precipitation. In Southeast Asia, "others" precipitation, the second dominant system in the present climate, has the largest contribution to the changes of very heavy precipitation (>99.9 percentile daily precipitation of historical period). Notable changes of the proportions of precipitation associated with each weather system are found mainly in subtropics, which can be regarded as the "hotspot" of the precipitation regime shift.

  • PDF

Nonlinear Canonical Correlation Analysis of the Korea Precipitaiton with Sea Surface Temperature near East Asia

  • 김광섭;순밍동
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.1620-1624
    • /
    • 2010
  • The NLCCA has been applied to analyze the East Asia sea surface temperature (SST) and Korea monthly precipitation, where the eight leading PCs of the SST and the eight PCs of the precipitation during 1973-2007 were inputs to an NLCCA model. The first NLCCA mode is plotted in the PC spaces of the Korea precipitation and the world SST present a curve linking the nonlinear relationship between the first three leading PCs of Korea precipitation and world SST forthright. The correlation coefficient between canonical variate time series u and v is 0.8538 for the first NLCCA mode. And there are some areas' climate variability have higher relationship with Korea precipitation, especially focus on the north of East Sea' climate variability have represented the higher canonical correlation with Korea precipitation, with the correlation coefficient is 0.871 and 0.838. Likewise in Korea, most stations display similarly uniform distributing characteristic and less difference, in particular the inshore stations have display identical distributing characteristic. In correlation variables' scores, the fluctuation and variation trend are also seasonal oscillation with high frequency.

  • PDF

Optimization of the Lowry Method of Protein Precipitation from the H. influenzae Type b Conjugate Vaccine Using Deoxycholic Acid and Hydrochloric Acid

  • Kim, Hyun-Sung;Kim, Sang-Joon;Kim, Hui-Jung;Kim, Han-Uk;Ahn, Sang-Joem;Hur, Byung-Ki
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권3호
    • /
    • pp.215-222
    • /
    • 2006
  • The Lowry method was used in this study to measure protein in Haemophilus influenzae type b (Hib) conjugate vaccines (polyribosylibitol phosphate-tetanus toxoid; PRP-TT) using deoxycholic acid (DOC) to induce protein precipitation. Trichloroacetic acid (TCA) did not induce precipitation adequately from the Hib conjugate bulk and the freeze-dried Hib conjugate product. Its yield was approximately 50%. The matrix structure of Hib conjugate inhibits precipitation by TCA. Although the Lowry method can be carried out without precipitation in Hib conjugate bulk when no residual impurities (adipic acid dihydrazide [ADH], 1-ethyl-3-(3-dimethylamino-propyl) carbodiimide-HCI [EDAC], phenol and cyanogens bromide [CNBr], etc.) are present, it cannot be used for Hib conjugate products that contain sucrose 8.5%, because 8.5% concentration of sucrose enhanced the protein concentration. DOC- and HCl-induced precipitation is an alternative method for evaluating the protein content of the Hib conjugate bulk and the Hib conjugate product. The precipitation was optimal with a final concentrate of 0.1% for DOC at $4^{\circ}C$ and pH 2. This Lowry method, using DOC/HCI precipitation to induce protein precipitation, was confirmed a consistent, reproducible, and valid test for proteins in Hib conjugate bulk and its freeze-dried product.

우리나라 여름철 강수량의 기후적 분포 특성 (Climatological Features of Summer Precipitation in Korea)

  • 조하만;최영진;권효정
    • 한국수자원학회논문집
    • /
    • 제30권3호
    • /
    • pp.247-256
    • /
    • 1997
  • 1961년 이전에 관측이 시작되어 30년 이상의 관측자료가 있는 기상청의 15개 관측소의 강수량 자료를 이용하여 우리나라의 여름철 강수량 분포 특성을 조사하였다. 특히 이 연구에서는 우리나라 강수량 기후 평년값을 이용하여 기후적 특성을 조사하였으며, 지역별로 연 강수량, 여름철 강수량, 장마기간중 강수량의 연도별 변동을 비교 분석하고 그 상관을 조사하였다. 대체로 우리나라의 경우 연 강수량의 반 이상이 6, 7, 8월의 여름철에 집중되어 있고, 또 이 여름철 강수량은 장마에 크게 영향을 받는다. 또 지역별로 여름철 강수량 및 장마가 연 강수량에 미치는 기여도를 조사한 결과 서울을 비롯한 중서부 내륙지방이 장마의 영향을 가장 많이 받으며 동해안 중북부 지역과 제주도 지역은 상대적으로 장마의 영향이 적고, 국지적인 지형적 영향을 많이 받는 것으로 나타났다. 또한 우리나라의 경우 강수량의 연도별 변동이 심한 것으로 나타났으며, 특히 연 강수량보다 여름철 강수량과 장마기간중 강수량의 변화가 더 심한 것으로 나타났다. 따라서 국가 수자원 문제와 관련하여 연 강수량의 변동을 파악하기 위해서는 여름철 강수량의 변동에 대한 이해가 중요하며 아울러 장마의 특성 즉 몬순에 대한 파악이 함께 이루어져야 한다.

  • PDF

Assessment of extreme precipitation changes on flood damage in Chungcheong region of South Korea

  • Bashir Adelodun;Golden Odey;Qudus Adeyi;Kyung Sook Choi
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.163-163
    • /
    • 2023
  • Flooding has become an increasing event which is one of the major natural disasters responsible for direct economic damage in South Korea. Driven by climate change, precipitation extremes play significant role on the flood damage and its further increase is expected to exacerbate the socioeconomic impact in the country. However, the empirical evidence associating changes in precipitation extremes to the historical flood damage is limited. Thus, there is a need to assess the causal relationship between changes in precipitation extremes and flood damage, especially in agricultural region like Chungcheong region in South Korea. The spatial and temporal changes of precipitation extremes from 10 synoptic stations based on daily precipitation data were analyzed using the ClimPACT2 tool and Mann-Kendall test. The four precipitation extreme indices consisting of consecutive wet days (CWD), number of very heavy precipitation wet days (R30 mm), maximum 1-day precipitation amount (Rx1day), and simple daily precipitation intensity (SDII), which represent changes in intensity, frequency, and duration, respectively, and the time series data on flooded area and flood damage from 1985 to 2020 were used to investigate the causal relationship in the ARDL-ECM framework and pairwise Granger causality analysis. The trend results showed that majority of the precipitation indices indicated positive trends, however, CWD showed no significant changes. ARDL-ECM framework showed that there was a long-run relationship among the variables. Further analysis on the empirical results showed that flooded area and Rx1day have significant positive impacts on the flood damage in both short and long-runs while R30 mm only indicated significant positive impact in the short-run, both in the current period, which implies that an increase in flooded area, Rx1day, and R30 mm will cause an increase in the flood damage. The pairwise Granger analysis showed unidirectional causality from the flooded area, R30 mm, Rx1day, and SDII to flood damage. Thus, these precipitation indices could be useful as indicators of pluvial flood damage in Chungcheong region of South Korea.

  • PDF

연강수량 및 클러스터 기법에 의한 강수의 지역화 분석(수공) (Regional Analysis of Precipitation using Mean Annual Precipitation and Cluster Methods)

  • 이순혁;맹승진;류경식;지호근
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2000년도 학술발표회 발표논문집
    • /
    • pp.397-404
    • /
    • 2000
  • A total of 65 rain gauges with Automatic Weather Station(AWS) were used to regional analysis of precipitation. Nine cluster regions were identified using geographical locations, maximum, mean, standard deviation of 1 day maximum rainfalls, mean annual precipitation and rainfall of rainy season in Korea. The mean annual precipitation, geographical locations, and the synoptic generating mechanisms were used to identify th five climatological homogeneous regions in Korea. Number of final regions by mean annual precipitation and cluster methods divided into five regions in Korea.

  • PDF