• Title/Summary/Keyword: Korea integrated seismic system

Search Result 43, Processing Time 0.033 seconds

Seismic Response Control of Structures Using Variable Stiffness and Variable Damping Devices (가변강성 및 가변감쇠 조절장치를 이용한 구조물의 지진응답제어)

  • 고현무;옥승용;우지영;박관순
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.449-456
    • /
    • 2003
  • Hybrid semi-active control system is applied to improve the seismic peformance of the building structure against earthquake excitation and the LQR-based semi-active control algorithm is developed to tune the integrated stiffness/damping characteristics of the hybrid system complementarily. Numerical simulation for a 8-story shear building has been carried out to verify the applicability and effectiveness of the proposed method. Analysis results showed that the hybrid system can be a compromising solution to the seismic response control problem, compared with conventional variable stiffness or variable damping systems. Comparison results proved that the proposed algorithm can perform refined tuning of the stiffness and damping coefficients of the hybrid semi-active control system better than sliding mode control algorithm.

  • PDF

Seismic Zonation of Site Period at Daejeon within Spatial GIS tool (공간 GIS 기법을 활용한 대전 지역 부지 주기의 지진 구역화)

  • Sun, Chang-Guk;Shin, Jin-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.563-574
    • /
    • 2008
  • Most of earthquake-induced geotechnical hazards have been caused by the site effects relating to the amplification of ground motion, which are strongly influenced by the local geologic conditions such as soil thickness or bedrock depth and soil stiffness. In this study, an integrated GIS-based information system for geotechnical data, called geotechnical information system (GTIS), was constructed to establish a regional counterplan against earthquake-induced hazards at an urban area, Daejeon, which is represented as a hub of research and development in Korea. To build the GTIS for the area of interesting, pre-existing geotechnical data collections were performed across the extended area including the study area and a walk-over site survey was additionally carried out to acquire surface geo-knowledge data. For practical application of the GTIS used to estimate the site effects at the area of interesting, seismic microzoning map of the characteristic site period was created and presented as regional synthetic strategy for earthquake-induced hazards prediction. In addition, seismic zonation for site classification according to the spatial distribution of the site period was also performed to determine the site amplification coefficients for seismic design and seismic performance evaluation at any site in the study area. Based on the case study on seismic zonations at Daejeon, it was verified that the GIS-based GTIS was very useful for the regional prediction of seismic hazards and also the decision support for seismic hazard mitigation.

  • PDF

3D-based equivalent model of SMART control rod drive mechanism using dynamic condensation method

  • Ahn, Kwanghyun;Lee, Kang-Heon;Lee, Jae-Seon;Chang, Seongmin
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1109-1114
    • /
    • 2022
  • The SMART (System-integrated Modular Advanced ReacTor) is an integral-type small modular reactor developed by KAERI (Korea Atomic Energy Research Institute). This paper discusses the feasibility and applicability of a 3D-based equivalent model using dynamic condensation method for seismic analysis of a SMART control rod drive mechanism. The equivalent model is utilized for complicated seismic analysis during the design of the SMART. While the 1D-based beam-mass equivalent model is widely used in the nuclear industry for its calculation efficiency, the 3D-based equivalent model is suggested for the seismic analysis of SMART to enhance the analysis accuracy of the 1D-based equivalent model while maintaining its analysis efficiency. To verify the suggested model, acceleration response spectra from seismic analysis based on the 3D-based equivalent model are compared to those from the 1D-based beam-mass equivalent model and experiments. The accuracy and efficiency of the dynamic condensation method are investigated by comparison to analysis results based on the conventional modeling methodology used for seismic analysis.

Seismic Performance and Vibration Control of Urban Over-track High-rise Buildings

  • Ying, Zhou;Rui, Wang;Zengde, Zhang
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.3
    • /
    • pp.207-219
    • /
    • 2022
  • During the structural design of urban over-track high-rise buildings, two problems are most likely encountered: the abrupt change of story stiffness between the podium and the upper towers, as well as the demand for train-induced vibration control. Traditional earthquake-resistant structures have to be particularly designed with transfer stories to meet the requirement of seismic control under earthquakes, and thus horizontal seismic isolation techniques are recommended to solve the transfer problem. The function of mitigating the vertical subway-induced vibration can be integrated into the isolation system including thick rubber bearings and 3D composite vibration control devices. Engineering project cases are presented in this paper for a more comprehensive understanding of the engineering practice and research frontiers of urban over-track high-rise buildings in China.

Optimal design of nonlinear seismic isolation system by a multi-objective optimization technique integrated with a stochastic linearization method (추계학적 선형화 기법을 접목한 다목적 최적화기법에 의한 비선형 지진격리시스템의 최적설계)

  • Kwag, Shin-Young;Ok, Seung-Yong;Koh, Hyun-Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.1-13
    • /
    • 2010
  • This paper proposes an optimal design method for the nonlinear seismic isolated bridge. The probabilities of failure at the pier and the seismic isolator are considered as objective functions for optimal design, and a multi-objective optimization technique is employed to efficiently explore a set of multiple solutions optimizing mutually-conflicting objective functions at the same time. In addition, a stochastic linearization method is incorporated into the multi-objective optimization framework in order to effectively estimate the stochastic responses of the bridge without performing numerous nonlinear time history analyses during the optimization process. As a numerical example to demonstrate the efficiency of the proposed method, the Nam-Han river bridge is taken into account, and the proposed method and the existing life-cycle-cost based design method are both applied for the purpose of comparing their seismic performances. The comparative results demonstrate that the proposed method not only shows better seismic performance but also is more economical than the existing cost-based design method. The proposed method is also proven to guarantee improved performance under variations in seismic intensity, in bandwidth and in the predominant frequency of the seismic event.

Seismic Analysis of Chemical Pump Using Automatic Mesh Generation System (자동요소생성 시스템을 이용한 케미컬 펌프의 지진해석)

  • Jang, Hyun-Seok;Lee, Joon-Seong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.685-690
    • /
    • 2011
  • This paper describes a seismic analysis of chemical pump using automated mesh generation system. The use of an automated analysis system, involving FE codes together with CAD systems and FE pre- and post-processors, has provided an important step towards shortening the design process and structural optimization. The FE model, which is a FE mesh accompanied with the analysis condition, is automatically converted from the analysis model. The FE models are then automatically analyzed using the FE analysis code. This integrated FE simulation system is applied to an analysis of three-dimensional complex solid structures such as a chemical pump.

Dynamic Characteristics of the Integral Reactor SMART

  • Kim, Tae-Wan;Park, Keun-Bae;Jeong, Kyeong-Hoon;Lee, Gyu-Mahn;Park, Suhn
    • Nuclear Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.111-120
    • /
    • 2001
  • In this study, a dynamic analysis of the integral reactor SMART (System-integrated Modular Advanced ReacTor) under postulated seismic events is performed to review the response characteristics of the major components. To enhance the feasibility of an analysis model, a detailed finite element model is synchronized with the products of concurrent design activities. The artificial time history, which has been applied to the seismic analysis for the Korean Standard Nuclear Power Plant (KSNP), is chosen to envelop broad site specifics in Korea. Responses in the horizontal direction are found slightly amplified, while those in the vertical direction are suppressed. Since amplified response is monitored at the control element drive mechanism (CEDM), minor design provision is considered to enhance the integrity of the subsystem.

  • PDF

Development of Information Model for Road Network Damage Calculation after Seismic Outbreak (지진 발생 후 도로망 피해 산정을 위한 정좌 모델 개발)

  • Yi, Jin-Hoon;Kim, Bong-Geun;Jeong, Dong-Gyun;Lee, Sang-Ho
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.374-381
    • /
    • 2006
  • This study presents a new information model for building a database which is used for the Damage Calculation in a Road network after Seismic outbreak (DCRS). The component which is required for information system and data analysis is divided by four factors. Those are Ground Motion Component, Road Network Component, Fragile Structure Component, and Cost Component. These components have various manners and procedures that build informations by each systems. In this study, applying the domestic system resources and these four factors, we presented the integrated evaluating system. finally, we also present the prototype of DCRS based on the ArcGIS. It is expected that developed prototype can play a role in more improved DCRS by advanced study.

  • PDF

Researches Related to Seismic Hazard Mitigation in Taiwan

  • Loh, Chin-Hsiung;Yeh, Chin-Hsun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.3
    • /
    • pp.13-26
    • /
    • 1998
  • In view of the rapid development of economics and technology, perilous meteorological and geological conditions often cause natural disasters and result in severe loss of lives and properties in Taiwan. To promote multi-hazard mitigation strategies in an integrated a, pp.oach, the National Science Council established a National Science and Technology Program for Disaster Mitigation in January 1998. This program emphasizes on the implementation of research results in the National Disaster Management System. This paper describes the earthquake loss estimation methodology that is currently developed in Taiwan. Topics of potential earth science hazards (PESH) and building vulnerability analysis are described in detail.

  • PDF

A Development of Real-time Vibration Monitoring and Analysis System Linked to the Integrated Management System of Ministry of Public Safety and Security (국민안전처 통합관리시스템 연계 가능한 시설물 진동 감지 및 분석 시스템 개발)

  • Lim, Ji-Hoon;Jung, Jin-Woo;Moon, Dae-Joong;Choi, Dong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.130-139
    • /
    • 2016
  • A frequency of earthquake occurrence in the Republic of Korea is increasing over the past few decades. In this situation, an importance of earthquake prevention comes to the fore because the earthquake does damage to structures and causes severe damage of human life. For the earthquake prevention, a real-time vibration measurement for structures is important. As an example, the United States of America and Japan have already been monitoring real-time earthquake acceleration for the important structures and the measured acceleration data has been managed by forming database. This database could be used for revising the seismic design specifications or predicting the damage caused by earthquake. In Korea, Earthquake Recovery Plans Act and Enforcement Regulations are revised and declared lately. Ministry of Public Safety and Security is constructing a integrated management system for the measured earthquake acceleration data. The purpose of this research is to develop a real-time vibration monitoring and analysis system for structures which links to the integrated management system. The developed system contains not only a monitoring function to show real-time acceleration data but also an analysis system to perform fast fourier transform, to obtain natural frequency and earthquake magnitude, to show response spectrum and power spectrum, and to evaluate structural health. Additionally, this system is designed to be able to link to the integrated management system of Ministry of Public Safety and Security. It is concluded that the developed system can be useful to build a safety management network, minimize maintenance cost of structures, and prevention of the structural damage due to earthquake.