• Title/Summary/Keyword: Korea Pavement Management System

Search Result 75, Processing Time 0.027 seconds

Tire/road Noise Characteristics of General Asphalt Pavement (일반 아스팔트포장의 타이어/노면 소음 특성)

  • Yoo, In-Kyoon;Lee, Su-Hyung;Han, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.175-182
    • /
    • 2021
  • As road noise became an issue, low-noise pavement (LNP) has emerged. The noise difference from general asphalt pavement (GAP) is a measure to explain the noise reduction of LNP. On the other hand, even for GAP, noise varies with the performance years (PY) and pavement condition. This study evaluated the representative noise value (RNV) by the speed and PY of GAP. Sections of 49selected from the National Road Pavement Management System, and the noise was measured at speeds from 50km/h to 80km/h at every 10km/h using the Close Proximity Method (CPX). Because the noise immediately after construction differed from the other, it was treated separately, and some outliers were removed. The noise increased with increasing PY. In addition, the noise increase by speed showed a reliable trend at all noise levels. The RNV for each speed and PY was obtained through analyses of the PY and speed. The average noise difference between the initial construction and the six-year-paced pavement was approximately 6dB. When evaluating the noise reduction of LNP, it is necessary to use RNV rather than the noise of old pavement. The RNV of GAP is necessary for a relative comparison with LNP and studying the road noise characteristics for each GAP type.

Road Maintenance Planning with Traffic Demand Forecasting (장래교통수요예측을 고려한 도로 유지관리 방안)

  • Kim, Jeongmin;Choi, Seunghyun;Do, Myungsik;Han, Daeseok
    • International Journal of Highway Engineering
    • /
    • v.18 no.3
    • /
    • pp.47-57
    • /
    • 2016
  • PURPOSES : This study aims to examine the differences between the existing traffic demand forecasting method and the traffic demand forecasting method considering future regional development plans and new road construction and expansion plans using a four-step traffic demand forecast for a more objective and sophisticated national highway maintenance. This study ultimately aims to present future pavement deterioration and budget forecasting planning based on the examination. METHODS : This study used the latest data offered by the Korea Transport Data Base (KTDB) as the basic data for demand forecast. The analysis scope was set using the Daejeon Metropolitan City's O/D and network data. This study used a traffic demand program called TransCad, and performed a traffic assignment by vehicle type through the application of a user equilibrium-based multi-class assignment technique. This study forecasted future traffic demand by verifying whether or not a realistic traffic pattern was expressed similarly by undertaking a calibration process. This study performed a life cycle cost analysis based on traffic using the forecasted future demand or existing past pattern, or by assuming the constant traffic demand. The maintenance criteria were decided according to equivalent single axle loads (ESAL). The maintenance period in the concerned section was calculated in this study. This study also computed the maintenance costs using a construction method by applying the maintenance criteria considering the ESAL. The road user costs were calculated by using the user cost calculation logic applied to the Korean Pavement Management System, which is the existing study outcome. RESULTS : This study ascertained that the increase and decrease of traffic occurred in the concerned section according to the future development plans. Furthermore, there were differences from demand forecasting that did not consider the development plans. Realistic and accurate demand forecasting supported an optimized decision making that efficiently assigns maintenance costs, and can be used as very important basic information for maintenance decision making. CONCLUSIONS : Therefore, decision making for a more efficient and sophisticated road management than the method assuming future traffic can be expected to be the same as the existing pattern or steady traffic demand. The reflection of a reliable forecasting of the future traffic demand to life cycle cost analysis (LCCA) can be a very vital factor because many studies are generally performed without considering the future traffic demand or with an analysis through setting a scenario upon LCCA within a pavement management system.

Study on the Changes in Evapotranspiration according to the Decentralized Rainwater Management (분산식 빗물관리시설 적용에 따른 증발산 변화 연구)

  • Han, Young-Hae;Lee, Tae-Goo
    • KIEAE Journal
    • /
    • v.12 no.5
    • /
    • pp.3-10
    • /
    • 2012
  • In this study, the influence of decentralized rainwater management over the changes in evapotranspiration was analyzed. The analysis method was obtained by establishing the decentralized rainwater management plan according to different scenarios, and subsequently examined evapotranspiration in the plan. Scenario 1 refers to the analysis of the existing situation, in which was 100% of a parking lot is asphalt pavement. In Scenario 2, the pavement of the parking surface in the parking lot is replaced with lawn blocks. In Scenario 3, some asphalt pavement was removed to establish a flower-bed type infiltration system to allow rainwater to permeate. In Scenario 4, infiltration and storage of rain water would be achieved by transforming the parking surface into lawn blocks, keeping the asphalt for the parking road while establishing a vegetation strip. The amount of evapotranspiration of the target site was analyzed with a water budget analysis program (CAT) using the 2001 meteorological data for each scenario According to the analysis values of S2 and S3, it was found that evapotranspiration is critically affected by the amount of area replaced with pervious area in the total target site. An energy equivalent to 680kWh is required for 1 ton of water to evaporate. Hence, it can be seen that the active inducement of evapotranspiration in urban area makes a positive contribution not only to heat island mitigation, but also to the small-scale water circulation process in a city.

Current Status of Management on Pharmacopuncture in Korea through Introduction of an Accreditation System

  • Sung, Soo-Hyun;Shin, Byung-Cheul;Park, Min-Jung;Kim, Kyeong Han;Kim, Ji-Won;Ryu, Ji-Yeon;Park, Jang-Kyung
    • Journal of Pharmacopuncture
    • /
    • v.22 no.2
    • /
    • pp.75-82
    • /
    • 2019
  • Objectives: Pharmacopuncture is a new form of acupuncture treatment that injects herbal medicine into acupuncture points. This paper introduces the management status of pharmacopuncture through accreditation, and examines the effect of accreditation on pharmacopuncture management. Methods: The Accreditation System of External Herbal Dispensaries (EHDs) of traditional Korean medicine clinics announced by the Ministry of Health and Welfare in September 2018 were investigated. Results: The Accreditation System of EHDs assesses and certifies herbal medicine and pharmacopuncture preparations. Regular components for the 'pharmacopuncture' certification consist of nine standards, 30 categories, and 165 items. The nine standards include: herbal dispensary facilities, clean room management, management and organization operation, employee management, document management, continuous quality control, herbal medicine management, management of preparation, and pavement management. Conclusion: Through EHD accreditation and certification system, traditional Korean medicine clinics and EHDs can now manage pharmacopuncture medicine quality and promise safe pharmacopuncture treatment for the people.

Development of Tunnel Asset Management (TAM) Program

  • Hamed Zamenian;Dae-Hyun (Dan) Koo
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.576-582
    • /
    • 2013
  • Typical highway infrastructure systems include roadway pavement, drainage systems, tunneling, and other hardware components such as guardrails, traffic signs, and lighting. Tunnels in a highway system have provided significant advantages to overcoming various natural challenges including crossing underneath bodies of water or through mountainous areas. While only a few tunnel failure cases have been reported, the failure rate is likely to increase as these assets age and because agencies have not emphasized tunneling asset management. A tunnel system undergoes a deterioration life cycle pattern that is similar to other infrastructure systems. There are very few agencies in the United States implementing comprehensive tunnel asset management programs. While current tunnel asset management programs focus on inspection, maintenance, and operation safety, there is an increasing need for the development of a comprehensive life cycle tunnel asset management program. This paper describes a conceptual framework for a comprehensive tunnel asset management program. The framework consists of three basic phases including a strategic plan, a tactical plan, and an operational plan to provide better information to the decision makers. The strategic plan is a basic long term approach of tunnel asset management. The tactical plan determines specific objectives and the operational plan actually applies asset management objectives in practice. The information includes operational condition, structural condition, efficiency of the system, emergency response, and life cycle cost analysis for tunnel capital improvement project planning.

  • PDF

Development of Level of Service System for Road Infrastructure Asset Management (도로시설물 자산관리를 위한 서비스수준체계 개발)

  • Han, Dae Seok;Yoo, In Kyoon;Lee, Su Hyung
    • International Journal of Highway Engineering
    • /
    • v.16 no.4
    • /
    • pp.75-86
    • /
    • 2014
  • PURPOSES: The aim of this paper is developing user-oriented flexible Level Of Service (LOS) system for integrated asset management of various road facilities. It is essential to overcome limitations of general management systems which only focus on a type of assets (e.g. pavement, bridge etc.), and to serve a customizable LOS platform for smooth implementation and future improvement of the LOS considering various managerial environments of road agencies. METHODS: This study suggested a total framework of the LOS system as a process for self-development, operation and improvement of LOS system to conduct the PDCA (Plan-Do-Check-Act) in management process. In the process, we adopted user-customizable elements regarding asset definition, service index and evaluation method to match with the managerial environment of road agencies. In addition, we conducted an empirical study on the entire process of the suggested LOS system with a real road agency (Korea Express Highway) to prove applicability of the LOS system. RESULTS: From the empirical study, we confirmed that the suggested LOS system framework were suitable for development of customized LOS system. In addition, evaluation of asset conditions by LOS ratings, and quantification of vision achievement of the Korea Express Highway were successfully made. It would be the first trial in integrated management approach with LOS systems for numerous road facilities. CONCLUSIONS : It was recognized that easy application and sustainable improvement of the LOS was the most critical point in asset management. The suggested LOS system would be a powerful weapon as a managerial tool in preparing tight budget, aging infrastructures, and increased demands for more accountability both in Korea and internationally. Implementation of the LOS system needs to be expanded to the other infrastructure members to serve satisfactory level of service to taxpayers.

An Establishment of Database for Effective Design of Anti-Frost Heave Layer using Field Data (도로포장의 효율적 동상방지층 설계를 위한 현장 계측자료의 데이터베이스(DB) 구축)

  • Kim, Nak-Seok;Nam, Young-Kug;Cho, Gyu-Tae;Lee, Bum-Woo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.43-47
    • /
    • 2011
  • Korea has seasonal weathers which result in the frosting of soil in winter times, and the thawing of soil in spring. These climate characteristics result in the damaging of pavements, due to the repeated freezing and thawing of road pavements during winter and spring. In order to reduce these pavement damages, anti-frost heave layers are being specially installed, however it is being applied based on foreign researches, and therefore result in the waste of national budget. With this study, a database system was constructed for effective management and monitoring of measured temperatures and function data of 2 meters below the embankment, cut slope, and the cutting-embankment boundary, which are 15 regions picked by the frost index diagram. As the study result, an effective storage and management-purpose database was established for easy data searching and downloading for the pavement design engineers.

USING QUANTITY ESTIMATE STATISTICAL MODELS FOR INFRASTRUCTURE LONG RANGE COST MANAGEMENT

  • Jui-Sheng Chou;Min Peng;James T. O'Connor;Khali R. Persad
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.808-813
    • /
    • 2005
  • Effective cost management requires reliable cost estimates at every stage of project development. The primary purpose of this research is to develop systematic modeling procedures and an automatic computing program for infrastructure estimating in the Texas Department of Transportation (TxDOT). The computing system toggles between project input information and segregated district unit prices for highway work item quantity estimates associated with earthwork and landscape, subgrade treatments and base, surface courses and pavement, structures, miscellaneous construction, and lighting, signing, markings and signals. This quantity-based approach was chosen because of the conventional approach lacking of quantity information until primary design is complete.

  • PDF

A Study on the Development of an Automated Pavement Crack Sealer (도로면 크랙 실링 자동화 장비 개발에 관한 연구)

  • Lee Jeong-Ho;Lee Jae-Kwon;Kim Min-Jae;Kim Young-Suk;Cho Moon-Young;Lee Jun-bok
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.539-542
    • /
    • 2002
  • Crack sealing is a maintenance procedure that is commonly used to reduce pavement degradation. If cracks in pavements are not sealed, surface water penetration can reduce the strength of the sub-base layers, which can result in increased deflections of the pavement. Reduced strength of the sub-base also accelerates the deterioration of the surface, due to development of greater cracking and potholes. Crack sealing is performed to reduce water and debris penetration, thereby helping to maintain pavement structural capacity and limiting future degradation. The process of sealing cracks in pavements is however dangerous, costly, and labor-intensive operation. Labor turnover and training are increasing problems related to crack sealing crews, and as traffic volumes increase. Automating crack sealing can reduce labor and road user costs, improve work quality, and decrease worker exposure to roadway hazards. The main objective of this research is to develop an automated system for sealing cracks in pavement. Extension of the algorithms and tools presented in this research is also recommended for future study.

  • PDF

A Study on the Development of an Automated Pavement Crack Sealer (도로면 크랙실링 자동화 로봇의 프로토타입 개발에 관한 연구)

  • Lee Jeong-Ho;Yu Hyun-Seok;Kim Young-Suk;Lee Jun-Bok;Cho Moon-Young
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.2 s.18
    • /
    • pp.162-171
    • /
    • 2004
  • Crack sealing is a maintenance procedure that is commonly used to reduce pavement degradation. If cracks in pavements are not sealed, surface water penetration can reduce the strength of the sub-base layers, which can result in increased deflections of the pavement. Reduced strength of the sub-base also accelerates the deterioration of the surface, due to development of greater cracking and potholes. Crack sealing is performed to reduce water and debris penetration, thereby helping to maintain pavement structural capacity and limiting future degradation. The process of sealing cracks in pavements is however dangerous, costly, and labor-intensive operation. Labor turnover and training are increasing problems related to crack sealing crews, and as traffic volumes increase. Automating crack sealing can reduce labor and road user costs, improve work quality, and decrease worker exposure to roadway hazards. The main objective of this research is to develop an automated system for sealing cracks in pavement. Extension of the algorithms and tools presented in this research is also recommended for future study.