• Title/Summary/Keyword: Korea Meteorological Administration Post-Processing

Search Result 16, Processing Time 0.025 seconds

Enhancing Medium-Range Forecast Accuracy of Temperature and Relative Humidity over South Korea using Minimum Continuous Ranked Probability Score (CRPS) Statistical Correction Technique (연속 순위 확률 점수를 활용한 통합 앙상블 모델에 대한 기온 및 습도 후처리 모델 개발)

  • Hyejeong Bok;Junsu Kim;Yeon-Hee Kim;Eunju Cho;Seungbum Kim
    • Atmosphere
    • /
    • v.34 no.1
    • /
    • pp.23-34
    • /
    • 2024
  • The Korea Meteorological Administration has improved medium-range weather forecasts by implementing post-processing methods to minimize numerical model errors. In this study, we employ a statistical correction technique known as the minimum continuous ranked probability score (CRPS) to refine medium-range forecast guidance. This technique quantifies the similarity between the predicted values and the observed cumulative distribution function of the Unified Model Ensemble Prediction System for Global (UM EPSG). We evaluated the performance of the medium-range forecast guidance for surface air temperature and relative humidity, noting significant enhancements in seasonal bias and root mean squared error compared to observations. Notably, compared to the existing the medium-range forecast guidance, temperature forecasts exhibit 17.5% improvement in summer and 21.5% improvement in winter. Humidity forecasts also show 12% improvement in summer and 23% improvement in winter. The results indicate that utilizing the minimum CRPS for medium-range forecast guidance provide more reliable and improved performance than UM EPSG.

Diagnosis of Low-Level Aviation Turbulence Using the Korea Meteorological Administration Post Processing (KMAPP) (고해상도 규모상세화 수치자료 산출체계(KMAPP)를 이용한 저고도 항공난류 진단)

  • Seok, Jae-Hyeok;Choi, Hee-Wook;Kim, Yeon-Hee;Lee, Sang-Sam
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.4
    • /
    • pp.1-11
    • /
    • 2020
  • In order to diagnose low-level turbulence in Korea, diagnostic indices of low-level turbulence were calculated from Aug 2016 to Jul 2019 using a Korea Meteorological Administration Post Precessing (KMAPP) developed by the National Institute Meteorological Sciences (NIMS), and the indices were evaluated using Aircaft Meteorological Data Relay (AMDAR). In the mean horizontal distribution of diagnostic indices calculated, severe turbulence was simulated along major domestic mountains, including near the Taebaek Mountains, the Sobaek Mountains and Hallasan Mountain on Jeju Island due to geographical factors. Later, detection performance was evaluated by calculating the KMAPP Low-Level Turbulencd index (KLT) on combined index, using AUC value of Individual diagnostic indices as a weight. The result showed that the AUC value of KLT was 0.73, and the detection performance was improved (0.02-0.13) when the index was combined. Also, when looking for the AMDAR data is divided into years, seasons, and altitudes, up to 0.94 AUC values were found in winter (DJF) and the surface (surface-1,000ft). By using high-resolution numerical data reflecting detailed terrain data, local turbulence distribution was well demonstrated and high detection performance was shown at low-level.

Low-Level Wind Shear (LLWS) Forecasts at Jeju International Airport using the KMAPP (고해상도 KMAPP 자료를 활용한 제주국제공항에서 저층 윈드시어 예측)

  • Min, Byunghoon;Kim, Yeon-Hee;Choi, Hee-Wook;Jeong, Hyeong-Se;Kim, Kyu-Rang;Kim, Seungbum
    • Atmosphere
    • /
    • v.30 no.3
    • /
    • pp.277-291
    • /
    • 2020
  • Low-level wind shear (LLWS) events on glide path at Jeju International Airport (CJU) are evaluated using the Aircraft Meteorological Data Relay (AMDAR) and Korea Meteorological Administration Post-Processing (KMAPP) with 100 m spatial resolution. LLWS that occurs in the complex terrains such as Mt. Halla on the Jeju Island affects directly aircraft approaching to and/or departing from the CJU. For this reason, accurate prediction of LLWS events is important in the CJU. Therefore, the use of high-resolution Numerical Weather Prediction (NWP)-based forecasts is necessary to cover and resolve these small-scale LLWS events. The LLWS forecasts based on the KMAPP along the glide paths heading to the CJU is developed and evaluated using the AMDAR observation data. The KMAPP-LLWS developed in this paper successfully detected the moderate-or-greater wind shear (strong than 5 knots per 100 feet) occurred on the glide paths at CJU. In particular, this wind shear prediction system showed better performance than conventional 1-D column-based wind shear forecast.

Verification of Low-Level Wind Shear Prediction System Using Aircraft Meteorological Data Relay (AMDAR) (항공기 기상관측자료(AMDAR)를 이용한 인천국제공항 저고도 급변풍 예측시스템 검증)

  • Jae-Hyeok Seok;Hee-Wook Choi;Geun-Hoi Kim;Sang-Sam Lee;Yong Hee Lee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.3
    • /
    • pp.59-70
    • /
    • 2023
  • In order to predict low-level wind shear at Incheon International Airport (RKSI), a Low-Level Wind Shear prediction system (KMAP-LLWS) along the runway take-off and landing route at RKSI was established using Korea Meteorological Administration Post-Processing (KMAP). For the performance evaluation, the case of low-level wind shear cases calculated from Aircraft Meteorological Data Relay (AMDAR) from July 2021 to June 2022 was used. As a result of verification using the performance evaluation index, POD, FAR, CSI, and TSS were 0.5, 0.85, 0.13, and 0.34, respectively, and the prediction performance was improved by POD, CSI, and TSS compared to the Low-Level Wind Shear prediction system (LDPS-LLWS) calculated using the Korea Meteorological Administration's Local Data Assimilation and Prediction System (LDAPS). This means that the use of high-resolution numerical models improves the predictability of wind changes. In addition, to improve the high FAR of KMAP-LLWS, the threshold for low-level wind shear strength was adjusted. As a result, the most effective low-level wind shear threshold at 8.5 knot/100 ft was derived. This study suggests that it is possible to predict and respond to low-level wind shear at RKSI. In addition, it will be possible to predict low-level wind shear at other airports without wind shear observation equipment by applying the KMAP-LLWS.

Analyses of the Meteorological Characteristics over South Korea for Wind Power Applications Using KMAPP (고해상도 규모상세화 수치자료 산출체계를 이용한 남한의 풍력기상자원 특성 분석)

  • Yun, Jinah;Kim, Yeon-Hee;Choi, Hee-Wook
    • Atmosphere
    • /
    • v.31 no.1
    • /
    • pp.1-15
    • /
    • 2021
  • High-resolution wind resources maps (maps, here after) with spatial and temporal resolutions of 100 m and 3-hours, respectively, over South Korea have been produced and evaluated for the period from July 2016 to June 2017 using Korea Meteorological Administration (KMA) Post Processing (KMAPP). Evaluation of the 10 m- and 80 m-level wind speed in the new maps (KMAPP-Wind) and the 1.5 km-resolution KMA NWP model, Local Data Assimilation and Prediction System (LDAPS), shows that the new high-resolution maps improves of the LDAPS winds in estimating the 10m wind speed as the new data reduces the mean bias (MBE) and root-mean-square error (RMSE) by 33.3% and 14.3%, respectively. In particular, the result of evaluation of the wind at 80 m which is directly related with power turbine shows that the new maps has significantly smaller error compared to the LDAPS wind. Analyses of the new maps for the seasonal average, maximum wind speed, and the prevailing wind direction shows that the wind resources over South Korea are most abundant during winter, and that the prevailing wind direction is strongly affected by synoptic weather systems except over mountainous regions. Wind speed generally increases with altitude and the proximity to the coast. In conclusion, the evaluation results show that the new maps provides significantly more accurate wind speeds than the lower resolution NWP model output, especially over complex terrains, coastal areas, and the Jeju island where wind-energy resources are most abundant.

Development of GK2A Convective Initiation Algorithm for Localized Torrential Rainfall Monitoring (국지성 집중호우 감시를 위한 천리안위성 2A호 대류운 전조 탐지 알고리즘 개발)

  • Park, Hye-In;Chung, Sung-Rae;Park, Ki-Hong;Moon, Jae-In
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.489-510
    • /
    • 2021
  • In this paper, we propose an algorithm for detecting convective initiation (CI) using GEO-KOMPSAT-2A/advanced meteorological imager data. The algorithm identifies clouds that are likely to grow into convective clouds with radar reflectivity greater than 35 dBZ within the next two hours. This algorithm is developed using statistical and qualitative analysis of cloud characteristics, such as atmospheric instability, cloud top height, and phase, for convective clouds that occurred on the Korean Peninsula from June to September 2019. The CI algorithm consists of four steps: 1) convective cloud mask, 2) cloud object clustering and tracking, 3) interest field tests, and 4) post-processing tests to remove non-convective objects. Validation, performed using 14 CI events that occurred in the summer of 2020 in Korean Peninsula, shows a total probability of detection of 0.89, false-alarm ratio of 0.46, and mean lead-time of 39 minutes. This algorithm can be useful warnings of rapidly developing convective clouds in future by providing information about CI that is otherwise difficult to predict from radar or a numerical prediction model. This CI information will be provided in short-term forecasts to help predict severe weather events such as localized torrential rainfall and hail.

Prediction of Low Level Wind Shear Using High Resolution Numerical Weather Prediction Model at the Jeju International Airport, Korea (고해상도 수치모델을 이용한 제주국제공항 저층급변풍 예측)

  • Kim, Geun-Hoi;Choi, Hee-Wook;Seok, Jae-Hyeok;Kim, Yeon-Hee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.4
    • /
    • pp.88-95
    • /
    • 2021
  • In aviation meteorology, the low level wind shear is defined as a sudden change of head windbelow 1600 feet that can affect the departing and landing of the aircraft. Jeju International Airport is an area where low level wind shear is frequently occurred by Mt. Halla. Forecasting of such wind shear would be useful in providing early warnings to aircraft. In this study, we investigated the performance of statistical downscaling model, called Korea Meteorological Administration Post-processing (KMAP) with a 100 m resolution in forecasting wind shear by the complex terrain. The wind shear forecasts was produced by calculating the wind differences between stations aligned with the runways. Two typical wind shear cases caused by complex terrain are validated by comparing to Low Level Wind Shear Alert System (LLWAS). This has been shown to have a good performance for describing air currents caused by terrain.

Development and Wind Speed Evaluation of Ultra High Resolution KMAPP Using Urban Building Information Data (도시건물정보를 반영한 초고해상도 규모상세화 수치자료 산출체계(KMAPP) 구축 및 풍속 평가)

  • Kim, Do-Hyoung;Lee, Seung-Wook;Jeong, Hyeong-Se;Park, Sung-Hwa;Kim, Yeon-Hee
    • Atmosphere
    • /
    • v.32 no.3
    • /
    • pp.179-189
    • /
    • 2022
  • The purpose of this study is to build and evaluate a high-resolution (50 m) KMAPP (Korea Meteorological Administration Post Processing) reflecting building data. KMAPP uses LDAPS (Local Data Assimilation and Prediction System) data to detail ground wind speed through surface roughness and elevation corrections. During the detailing process, we improved the vegetation roughness data to reflect the impact of city buildings. AWS (Automatic Weather Station) data from a total of 48 locations in the metropolitan area including Seoul in 2019 were used as the observation data used for verification. Sensitivity analysis was conducted by dividing the experiment according to the method of improving the vegetation roughness length. KMAPP has been shown to improve the tendency of LDAPS to over simulate surface wind speeds. Compared to LDAPS, Root Mean Square Error (RMSE) is improved by approximately 23% and Mean Bias Error (MBE) by about 47%. However, there is an error in the roughness length around the Han River or the coastline. Accordingly, the surface roughness length was improved in KMAPP and the building information was reflected. In the sensitivity experiment of improved KMAPP, RMSE was further improved to 6% and MBE to 3%. This study shows that high-resolution KMAPP reflecting building information can improve wind speed accuracy in urban areas.

Evaluation and Improvement of the KMAPP Surface Wind Speed Prediction over Complex Terrain Areas (복잡 지형 지역에서의 KMAPP 지상 풍속 예측 성능 평가와 개선)

  • Keum, Wang-Ho;Lee, Sang-Hyun;Lee, Doo-Il;Lee, Sang-Sam;Kim, Yeon-Hee
    • Atmosphere
    • /
    • v.31 no.1
    • /
    • pp.85-100
    • /
    • 2021
  • The necessity of accurate high-resolution meteorological forecasts becomes increasing in socio-economical applications and disaster risk management. The Korea Meteorological Administration Post-Processing (KMAPP) system has been operated to provide high-resolution meteorological forecasts of 100 m over the South Korea region. This study evaluates and improves the KMAPP performance in simulating wind speeds over complex terrain areas using the ICE-POP 2018 field campaign measurements. The mountainous measurements give a unique opportunity to evaluate the operational wind speed forecasts over the complex terrain area. The one-month wintertime forecasts revealed that the operational Local Data Assimilation and Prediction System (LDAPS) has systematic errors over the complex mountainous area, especially in deep valley areas, due to the orographic smoothing effect. The KMAPP reproduced the orographic height variation over the complex terrain area but failed to reduce the wind speed forecast errors of the LDAPS model. It even showed unreasonable values (~0.1 m s-1) for deep valley sites due to topographic overcorrection. The model's static parameters have been revised and applied to the KMAPP-Wind system, developed newly in this study, to represent the local topographic characteristics better over the region. Besides, sensitivity tests were conducted to investigate the effects of the model's physical correction methods. The KMAPP-Wind system showed better performance in predicting near-surface wind speed during the ICE-POP period than the original KMAPP version, reducing the forecast error by 21.2%. It suggests that a realistic representation of the topographic parameters is a prerequisite for the physical downscaling of near-ground wind speed over complex terrain areas.

Study on the Methodology for Generating Future Precipitation Data by the Rural Water District Using Grid-Based National Standard Scenario (격자단위 국가 표준 시나리오를 적용한 농촌용수구역단위 자료변환 방법 비교 연구)

  • Kim, Siho;Hwang, Syewoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.3
    • /
    • pp.69-82
    • /
    • 2023
  • Representative meteorological data of the rural water district, which is the spatial unit of the study, was produced using the grid-based national standard RCP scenario rainfall data provided by the Korea Meteorological Administration. The retrospective reproducibility of the climate model scenario data was analyzed, and the change in climate characteristics in the water district unit for the future period was presented. Finally the data characteristics and differences of each meteorological element according to various spatial resolution conversion and post-processing methods were examined. As a main result, overall, the distribution of average precipitation and R95p of the grid data, has reasonable reproducibility compared to the ASOS observation, but the maximum daily rainfall tends to be distributed low nationwide. The number of rainfall days tends to be higher than the station-based observation, and this is because the grid data is generally calculated using the area average concept of representative rainfall data for each grid. In addition, in the case of coastal regions, there is a problem that administrative districts of islands and rural water districts do not match. and In the case of water districts that include mountainous areas, such as Jeju, there was a large difference in the results depending on whether or not high rainfall in the mountainous areas was reflected. The results of this study are expected to be used as foundation for selecting data processing methods when constructing future meteorological data for rural water districts for future agricutural water management plans and climate change vulnerability assessments.