• Title/Summary/Keyword: Korea Gas Corporation.

Search Result 1,201, Processing Time 0.029 seconds

Reaction Characteristics of Thermochemical Methane Reforming on Ferrite-Based Metal Oxide Mediums (페라이트계 금속 산화물 매체 상에서 열화학 메탄 개질 반응 특성)

  • Cha, Kwang-Seo;Lee, Dong-Hee;Jo, Won-Jun;Lee, Young-Seak;Kim, Young-Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.2
    • /
    • pp.140-150
    • /
    • 2007
  • Thermochemical 2-step methane reforming, involving the reduction of metal oxide with methane to produce syngas and the oxidation of the reduced metal oxide with water to produce pure hydrogen, was investigated on ferrite-based metal oxide mediums. The mediums, CoFZ, CuFZ, or MnFZ, were composed of the mixture of M(M=Co, Cu or Mn)-substituted ferrite as an active component and $ZrO_2$ as a binder, respectively. The WZ medium, composed of the mixture of $WO_3$ and $ZrO_2$, was also prepared to compare. With an addition of $ZrO_2$, the surface area of the mediums was slightly increased and the sintering of active components was greatly suppressed during the reduction. The higher reactivity of the reduced mediums for water splitting was confirmed by the temperature programmed reaction. From the results of the thermochemical 2-step methane reforming, the reactivity of $CH_4$ reduction and water splitting with ferrite-based metal oxide mediums was relatively higher than that with WZ, and the order of reactivity of the mediums was MnFZ>CoFZ>CuFZ>WZ.

Expansion of the Darcy-Weisbach Relation for Porous Flow Analysis (다공질 유동해석을 위한 Darcy-Weisbach 관계식의 확장)

  • Shin, Chang Hoon;Park, Warn Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.4
    • /
    • pp.229-238
    • /
    • 2017
  • This study started to deduce a permeability relationship that can consider the geometric features of various porous media under different flow regimes. With reference to the previous works of Kozeny and Carman, the conventional Darcy-Weisbach relation (Darcy's friction flow equation) was reviewed and expanded for porous flow analysis. Based on the capillary model, this relation was transformed to the friction equivalent permeability (FEP) definition. The validity of the FEP definition was confirmed by means of comparison with the Kozeny-Carman equation. Hereby, it was shown that the FEP definition is the generalized form of the Kozeny-Carman equation, which is confined to laminar flow through a circular capillary. In conclusion, the FEP definition as a new permeability estimation method was successfully developed by expanding the Darcy-Weisbach relation for porous flow analyses.

Study on CO2 Decomposition using Ar/CO2 Inductively Coupled Plasma (아르곤/이산화탄소 혼합가스의 유도 결합 플라즈마를 이용한 이산화탄소 분해 연구)

  • Kim, Kyung-Hyun;Kim, Kwan-Yong;Lee, Hyo-Chang;Chung, Chin-Wook
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.135-140
    • /
    • 2015
  • Decomposition of carbon dioxide is studied using $Ar/CO_2$ mixture inductively coupled plasmas (ICP). Argon gas was added to generate plasma which has high electron density. To measure decomposition rate of $CO_2$, optical emission actinometry is used. Changing input power, pressure and mixture ratio, the plasma parameters and the spectrum intensity were measured using single Langmuir probe and spectroscope. The source characteristic of Carbon dioxide ICP observed from the obtained plasma parameters. The decomposition rate is evolved depending on the reaction and discharge mode. This result is analyzed with both the measurement of the plasma parameters and the dissociation mechanism of $CO_2$.

Process Improvement and Evaluation of 0.1 MW-scale Test Bed using Amine Solvent for Post-combustion CO2 Capture (0.1 MW급 연소후 습식아민 CO2 포집 Test Bed 공정개선효과 검증)

  • Park, Jong Min;Cho, Seong Pill;Lim, Ta Young;Lee, Young ill
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.103-108
    • /
    • 2016
  • Carbon Capture and Storage technologies are recognized as key solution to meet greenhouse gas emission standards to avoid climate change. Although MEA (monoethanolamine) is an effective amine solvent in $CO_2$ capture process, the application is limited by high energy consumption, i.e., reduction of 10% of efficiency of coal-fired power plants. Therefore the development of new solvent and improvement of $CO_2$ capture process are positively necessary. In this study, improvement of $CO_2$ capture process was investigated and applied to Test Bed for reducing energy consumption. Previously reported technologies were examined and prospective methods were determined by simulation. Among the prospective methods, four applicable methods were selected for applying to 0.1 MW Test Bed, such as change of packing material in absorption column, installing the Intercooling System to absorption column, installing Rich Amine Heater and remodeling of Amines Heat Exchanger. After the improvement construction of 0.1 MW Test Bed, the effects of each suggested method were evaluated by experimental results.

The development of industrial secure L2 switch and introduction example for management and security improvement of supervisory control network in purification plant (정수장 감시제어망의 관리와 보안개선을 위한 산업용 보안 L2스위치 개발 및 적용사례)

  • Kim, Yunha;Yu, Chool;Oh, Eun;Kim, Chanmoon;Park, Ikdong;Kim, Yongseong;Choi, Hyunju
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.5
    • /
    • pp.329-339
    • /
    • 2019
  • Recently, the advancement of information and communication technology(ICT) is expanding the connectivity through Internet of Things(IoT), and the media of connection is also expanding from wire/cable transmission to broadband wireless communication, which has significantly improved mobility. This hyperconnectivity has become a key element of the fourth industrial revolution, whereas the supervisory control network of purification plants in korea is operated as a communication network separated from the outside, thereby lagging in terms of connectivity. This is considered the best way to ensure security, and thus there is hardly any consideration of establishing alternatives to operate an efficient and stable communication network. Moreover, security for management of a commercialized communication network and network management solution may be accompanied by immense costs, making it more difficult to make new attempts. Therefore, to improve the conditions for the current supervisory control network of purification plants, this study developed a industrial security L2 switch that supports modbus TCP(Transmission Control Protocol) communication and encryption function of the transmission section. As a result, the communication security performance improved significantly, and the cost for implementing the network management system using Historical Trend and information of HMI(Human Machine Interface) could be reduced by approximately KRW 200 million. The results of this study may be applied to systems for gas, electricity and social safety nets that are infrastructure communication networks that are similar to purification plants.

An analysis of the Factors of Moving in and Activation Strategies for Incheon Cold-Chain Cluster using LNG cold energy (LNG 냉열을 활용한 인천항 냉동·냉장 클러스터 입주요인 분석 및 활성화 방안 연구)

  • Ahn, kil-Seob;Oh, Jae-Gyun;Yang, Tae-Hyeon;Yeo, Gi-Tae
    • Journal of Digital Convergence
    • /
    • v.17 no.2
    • /
    • pp.101-111
    • /
    • 2019
  • The construction of a "cold-chain cluster," which is a complex of cold-storage warehouses is emerging as an issue in the logistics industry. The Incheon Port Authority, in partnership with Korea Gas Corporation, is carrying out a project to build a cold-storage cluster using cold energy generated in the Songdo LNG receiving terminal. This study proposes a method of activating the cold-storage cluster using the CFPR methodology. An analysis of major factors showed that the most important factor was stability and profitability, which scored 0.281. For sub-factors, sustainable trade volume was the highest in importance, followed by rent level, the sustainability of LNG cold energy utilization technology, competition with general cold-storage warehouses, and exclusion of duplicate investments in facilities. For the future study, the evaluation of complex of cold-storage warehouses using major factors drawn out from this study is needed.

High Sensitivity Hydrogen Sensor Based on AlGaN/GaN-on-Si Heterostructure (AlGaN/GaN-on-Si 이종접합 기반의 고감도 수소센서)

  • Choi, June-Heang;Jo, Min-Gi;Kim, Hyungtak;Lee, Ho-Kyoung;Cha, Ho-Young
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.1
    • /
    • pp.39-43
    • /
    • 2019
  • Hydrogen energy has positive effects as an alternative energy source to overcome the energy shortage issues. On the other hand, since stability is very important in use, sensor technology that enables accurate and rapid detection of hydrogen gas is highly required. In this study, hydrogen sensor was developed on AlGaN/GaN heterostructure platform using Pd catalyst where a recess structure was employed to improve the sensitivity. Temperature and bias voltage dependencies on sensitivity were carefully investigated using a hydrogen concentration of 4% that is the safety threshold concentration. Due to the excellent properties of AlGaN/GaN heterostructure in conjunction with the recess structure, a very high sensitivity of 56% was achieved with a fast response speed of 0.75 sec.

Prediction in Dissolved Oxygen Concentration and Occurrence of Hypoxia Water Mass in Jinhae Bay Based on Machine Learning Model (기계학습 모형 기반 진해만 용존산소농도 및 빈산소수괴 발생 예측)

  • Park, Seongsik;Kim, Byeong Kuk;Kim, Kyunghoi
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.3
    • /
    • pp.47-57
    • /
    • 2022
  • We carried out studies on prediction in concentration of dissolved oxygen (DO) with LSTM model and prediction in occurrence of hypoxia water mass (HWM) with decision tree. As results of study on prediction in DO concentration, a large number of Hidden node caused high complexity of model and required enough Epoch. And it was high accuracy in long Sequence length as prediction time step increased. The results of prediction in occurrence of HWM showed that the accuracy of nonHWM case was 66.1% in 30 day prediction, it was higher than 37.5% of HWM case. The reason is that the decision tree might overestimate DO concentration.

Seismic Data Processing and Inversion for Characterization of CO2 Storage Prospect in Ulleung Basin, East Sea (동해 울릉분지 CO2 저장소 특성 분석을 위한 탄성파 자료처리 및 역산)

  • Lee, Ho Yong;Kim, Min Jun;Park, Myong-Ho
    • Economic and Environmental Geology
    • /
    • v.48 no.1
    • /
    • pp.25-39
    • /
    • 2015
  • $CO_2$ geological storage plays an important role in reduction of greenhouse gas emissions, but there is a lack of research for CCS demonstration. To achieve the goal of CCS, storing $CO_2$ safely and permanently in underground geological formations, it is essential to understand the characteristics of them, such as total storage capacity, stability, etc. and establish an injection strategy. We perform the impedance inversion for the seismic data acquired from the Ulleung Basin in 2012. To review the possibility of $CO_2$ storage, we also construct porosity models and extract attributes of the prospects from the seismic data. To improve the quality of seismic data, amplitude preserved processing methods, SWD(Shallow Water Demultiple), SRME(Surface Related Multiple Elimination) and Radon Demultiple, are applied. Three well log data are also analysed, and the log correlations of each well are 0.648, 0.574 and 0.342, respectively. All wells are used in building the low-frequency model to generate more robust initial model. Simultaneous pre-stack inversion is performed on all of the 2D profiles and inverted P-impedance, S-impedance and Vp/Vs ratio are generated from the inversion process. With the porosity profiles generated from the seismic inversion process, the porous and non-porous zones can be identified for the purpose of the $CO_2$ sequestration initiative. More detailed characterization of the geological storage and the simulation of $CO_2$ migration might be an essential for the CCS demonstration.

An Experimental Study on the Combustion Characteristics of a Catalytic Combustor for an MCFC Power Generation System (MCFC 발전시스템용 촉매연소기의 연소 특성에 관한 실험적 연구)

  • Hong, Dong-Jin;Ahn, Kook-Young;Kim, Man-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.4
    • /
    • pp.405-412
    • /
    • 2012
  • In the MCFC power generation system, the combustor supplies a high temperature mixture of gases to the cathode and heat to the reformer by using the off-gas from the anode; the off-gas includes high concentrations of $H_2O$ and $CO_2$. Since a combustor needs to be operated in a very lean condition and avoid local heating, a catalytic combustor is usually adopted. Catalytic combustion is also generally accepted as one of the environmentally preferred alternatives for generation of heat and power from fossil fuels because of its complete combustion and low emissions of pollutants such as CO, UHC, and $NO_x$. In this study, experiments were conducted on catalytic combustion behavior in the presence of Pd-based catalysts for the BOP (Balance Of Plant) of 5 kW MCFC (Molten Carbonate Fuel Cell) power generation systems. Extensive investigations were carried out on the catalyst performance with the gaseous $CH_4$ fuel by changing such various parameters as $H_2$ addition, inlet temperature, excess air ratio, space velocity, catalyst type, and start-up schedule of the pilot system adopted in the BOP.