• Title/Summary/Keyword: Kompsat-2 image

Search Result 295, Processing Time 0.028 seconds

Automatic Registration Between KOMPSAT-2 and TerraSAR-X Images (KOMPSAT-2 영상과 TerraSAR-X 영상 간 자동기하보정)

  • Han, You-Kyung;Byun, Young-Gi;Chae, Tae-Byeong;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.6
    • /
    • pp.667-675
    • /
    • 2011
  • In this paper, we propose an automatic image-to-image registration between high resolution multi-sensor images. To do this, TerraSAR-X image was shifted according to the initial translation differences of the x and y directions between images estimated using Mutual Information method. After that, the Canny edge operator was applied to both images to extract linear features. These features were used to design a cost function that finds matching points based on the similarities of their locations and gradient orientations. For extracting large number of evenly distributed matching points, only one point within each regular grid constructed throughout the image was extracted to the final matching point pair. The model, which combined the piecewise linear function with the global affine transformation, was applied to increase the accuracy of the geometric correction, and the proposed method showed RMSE lower than 5m in all study sites.

Analysis of Co-registration Performance According to Geometric Processing Level of KOMPSAT-3/3A Reference Image (KOMPSAT-3/3A 기준영상의 기하품질에 따른 상호좌표등록 결과 분석)

  • Yun, Yerin;Kim, Taeheon;Oh, Jaehong;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.221-232
    • /
    • 2021
  • This study analyzed co-registration results according to the geometric processing level of reference image, which are Level 1R and Level 1G provided from KOMPSAT-3 and KOMPSAT-3A images. We performed co-registration using each Level 1R and Level 1G image as a reference image, and Level 1R image as a sensed image. For constructing the experimental dataset, seven Level 1R and 1G images of KOMPSAT-3 and KOMPSAT-3A acquired from Daejeon, South Korea, were used. To coarsely align the geometric position of the two images, SURF (Speeded-Up Robust Feature) and PC (Phase Correlation) methods were combined and then repeatedly applied to the overlapping region of the images. Then, we extracted tie-points using the SURF method from coarsely aligned images and performed fine co-registration through affine transformation and piecewise Linear transformation, respectively, constructed with the tie-points. As a result of the experiment, when Level 1G image was used as a reference image, a relatively large number of tie-points were extracted than Level 1R image. Also, in the case where the reference image is Level 1G image, the root mean square error of co-registration was 5 pixels less than the case of Level 1R image on average. We have shown from the experimental results that the co-registration performance can be affected by the geometric processing level related to the initial geometric relationship between the two images. Moreover, we confirmed that the better geometric quality of the reference image achieved the more stable co-registration performance.

KOMPSAT-2 Geometric Cal/Val Overview and Preliminary Result Analysis (다목적실용위성2호 기하검보정 및 초기결과 분석)

  • Seo, Doo-Chun;Lee, Dong-Han;Song, Jeong-Heon;Park, Su-Young;Lim, Hyo-Suk
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.145-148
    • /
    • 2007
  • The Korea Multi-Purpose Satellite-2 (KOMPSAT-2) was launched in July 2006 and The main mission of the KOMPSAT-2 is a high resolution imaging for the cartography of Korea peninsula by utilizing Multi Spectral Camera (MSC) images. The camera resolutions are 1 m in panchromatic scene and 4 m in multi-spectral imaging. KOMPSAT-2 measure the position, velocity and attitude data of satellite using by star sensor, gyro sensor, and GPS sensor. This paper provides an initial geometric accuracy assessment of the KOMPSAT-2 high resolution image, both geometric Cal/Val overview.

  • PDF

GENERATING NUC TABLES BASED ON STATISTICAL DATA COLLECTION FOR KOMPSAT-2 WITHIN LEOP

  • Song, Jeong-Heon;Park, Su-Young
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.788-790
    • /
    • 2006
  • The algorithm of calculating NUC table, based on Image data collection, is based on two basic assumptions. These basic assumptions are as follow: one is the NUC is of a linear nature. The other is all pixel see the same statistical distribution for large number of lines. We generated NUC tables for a radiometric calibration & validation of KOMPSAT-2 using a dark cal. Data.

  • PDF

Analysis of the Targeting Accuracy of KOMPSAT-1 EOC (아리랑위성1호EOC영상촬영의 지향정확도분석)

  • Jeon, Gap-Ho;Kim, Yun-Su;Seo, Du-Cheon
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.220-226
    • /
    • 2006
  • At present the KOMPSAT-1 is operating for seven years, though mission life time was only three years. We expect the KOMPSAT-1's mission for several years ahead, considering the KOMPSAT-1's current conditions. However, a question that the plan and the result was not equal have being arises. Recently, we attempted to take a picture of the Mount Everest. But we don't take a picture of the Mount Everest in the center of image. This paper make clear the difference between target center from operating commender and image center from received data, for the continual and stable KOMPSAT operation.

  • PDF

KOMPSAT-2 MSC DCSU Operational Concept

  • Lee, Jong-Tae;Lee, Sang-Gyu;Lee, Sang-Taek
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.821-826
    • /
    • 2002
  • The KOMPSAT-2 DCSU(the data compression & storage unit) performs the acquisition of image data from cameras, the compression with requested compression rate, the storage with specified file ID on the mission command and the distribution to the assigned DLS(Data Link System) channels per the mission and operation requirements. The worldwide observation using the MSC is able to be achieved by this DCSU's behavior. This paper presents the features of KOMPSAT-2 DCSU and provides proper ground operation concept after launch.

  • PDF

A Comparative Study on Suitable SVM Kernel Function of Land Cover Classification Using KOMPSAT-2 Imagery (KOMPSAT-2 영상의 토지피복분류에 적합한 SVM 커널 함수 비교 연구)

  • Kang, Nam Yi;Go, Sin Young;Cho, Gi Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.19-25
    • /
    • 2013
  • Recently, the high-resolution satellite images is used the land cover and status data for the natural resources or environment management very helpful. The SVM algorithm of image processing has been used in various field. However, classification accuracy by SVM algorithm can be changed by various kernel functions and parameters. In this paper, the typical kernel function of the SVM algorithm was applied to the KOMPSAT-2 image and than the result of land cover performed the accuracy analysis using the checkpoint. Also, we carried out the analysis for selected the SVM kernel function from the land cover of the target region. As a result, the polynomial kernel function is demonstrated about the highest overall accuracy of classification. And that we know that the polynomial kernel and RBF kernel function is the best kernel function about each classification category accuracy.

The Land Cover Change Detection of an Urban Area from Aerial Photos and KOMPSAT EOC Satellite Imagery (항공사진과 KOMPSAT EOC 위성영상으로부터 도시지역의 토지피복 변화 검출)

  • 조창환;배상우;이성순;이진덕
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.177-182
    • /
    • 2004
  • This study presents the application of aerial photographs and KOMPSAT-1 Electro-Optical Camera(EOC) imagery in detecting the change of an urban area that has been rapidly growing. For the study, we used multi-time images which were acquired by two different sensors. For all of the images, the coordinate reference system and scale were first made identical through the 1st and 2nd geometric corrections and then image resampling were carried out to spatial resolution of 7m to detect changes under the same conditions. The Image Differencing was employed as a change detection technique. It was confirmed to be able to detect the changes of terrestrial surface like building, structure and road features from aerial photos and KOMPSAT EOC images with single band. The changes could be detected to some extent with the images acquired from different kinds of sensors as well as the same kinds of sensors.

  • PDF

CO-REGISTRATION OF KOMPSAT IMAGERY AND DIGITAL MAP

  • Han, Dong-Yeob;Lee, Hyo-Seong
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.11-13
    • /
    • 2008
  • This study proposes the method to use existing digital maps as one of the technologies to exclude individual differences that occur in the process of manually determining GCP for the geometric correction of KOMPSAT images and applying it to the images and to automate the generation of ortho-images. It is known that, in case high-resolution satellite images are corrected geometrically by using RPC, first order polynomials are generally applied as the correction formula in order to obtain good results. In this study, we matched the corresponding objects between 1:25,000 digital map and a KOMPSAT image to obtain the coefficients of the zero order polynomial and showed the differences in the pixel locations obtained through the matching. We performed proximity corrections using the Boolean operation between the point data of the surface linear objects and the point data of the edge objects of the image. The surface linear objects are road, water, building from topographic map.

  • PDF

Enhancement of Classification Accuracy and Environmental Information Extraction Ability for KOMPSAT-1 EOC using Image Fusion (영상합성을 통한 KOMPSAT-1 EOC의 분류정확도 및 환경정보 추출능력 향상)

  • Ha, Sung Ryong;Park, Dae Hee;Park, Sang Young
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.2
    • /
    • pp.16-24
    • /
    • 2002
  • Classification of the land cover characteristics is a major application of remote sensing. The goal of this study is to propose an optimal classification process for electro-optical camera(EOC) of Korea Multi-Purpose Satellite(KOMPSAT). The study was carried out on Landsat TM, high spectral resolution image and KOMPSAT EOC, high spatial resolution image of Miho river basin, Korea. The study was conducted in two stages: one was image fusion of TM and EOC to gain high spectral and spatial resolution image, the other was land cover classification on fused image. Four fusion techniques were applied and compared for its topographic interpretation such as IHS, HPF, CN and wavelet transform. The fused images were classified by radial basis function neural network(RBF-NN) and artificial neural network(ANN) classification model. The proposed RBF-NN was validated for the study area and the optimal model structure and parameter were respectively identified for different input band combinations. The results of the study propose an optimal classification process of KOMPSAT EOC to improve the thematic mapping and extraction of environmental information.

  • PDF