• Title/Summary/Keyword: Kompsat-2 image

Search Result 297, Processing Time 0.027 seconds

Modulation Transfer Function (MTF) Measurement For 1 m High Resolution Satellite Images such as KOMPSAT-2 U sing Edge Function

  • Song Jeong-Heon;Lee Dong-Han;Lee Sun-Gu;Seo Du-Ceon;Park Soo-Young;Lim Hyo-Suk;Paek Hong-Yul
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.482-484
    • /
    • 2005
  • The Modulation Transfer Function (MTF) is commonly used to characterize the spatial quality of imaging systems. This work is the attempt to measure the MTF at Nyquist frequency of the satellite imaging system what has 1m spatial resolution for KOMPSAT-2 image using the edge function. Artificial tarp targets are used in this study. A type of this tarp edge consists of two adjacent uniform bright and dark sides commonly used to test the performance of an optical system in edge function. The results from this work demonstrate the potential applicability of this method to estimate the response characteristics for KOMPSAT-2 that is scheduled to be launched.

  • PDF

Monitoring of Graveyards in Mountainous Areas with Simulated KOMPSAT-2 imagery

  • Chang, Eun-Mi;Kim, Min-Ho;Lee, Byung-Whan;Heo, Min
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1409-1411
    • /
    • 2003
  • The application of simulated KOMPSAT-2 imagery to monitor graveyards is to be developed. Positions calculated from image were compared with those obtained from Geographic Positioning System. With 24 checkpoints, the position of graveyards showed within 5-meter range. Unsupervised classification, supervised classification, and objected-orientation classification algorithms were used to extract the graveyard. Unsupervised classification with masking processes based on National topographic data gives the best result. The graveyards were categorized with four types in field studies while the two types of graveyards were shown in descriptive statistics. Cluster Analysis and discriminant analysis showed the consistency with two types of tombs. It was hard to get a specific spectral signature of graveyards, as they are covered with grasses at different levels and shaded from the surrounding trees. The slopes and aspects of location of graveyards did not make any difference in the spectral signatures. This study gives the basic spectral characteristics for further development of objected-oriented classification algorithms and plausibility of KOMPSAT-2 images for management of mountainous areas in the aspect of position accuracy and classification accuracy.

  • PDF

Generation of the KOMPSAT-2 Ortho Mosaic Imagery on the Korean Peninsula (아리랑위성 2호 한반도 정사모자이크영상 제작)

  • Lee, Kwang-Jae;Yyn, Hee-Cheon;Kim, Youn-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.3
    • /
    • pp.103-114
    • /
    • 2013
  • In this study, we established the ortho mosaic imagery on the Korean Peninsula using KOMPSAT-2 images and conducted an accuracy assessment. Rational Polynomial Coefficient(RPC) modeling results were mostly less than 2 pixels except for mountainous regions which was difficult to select a Ground Control Point(GCP). Digital Elevation Model(DEM) which was made using the digital topographic map on the scale of 1:5,000 was used for generating an ortho image. In the case of inaccessible area, the Shuttle Radar Topography Mission(SRTM) DEM was used. Meanwhile, the ortho mosaic image of the Korean Peninsula was produced by each ortho image aggregation and color adjustment. An accuracy analysis for the mosaic image was conducted about a 1m color fusion image. In order to verify a geolocation accuracy, 813 check points which were acquired by field survey in South Korea were used. We found that the maximum error was not to exceed 5m(Root Mean Square Error : RMSE). On the other hand, in the case of inaccessible area, the extracted check points from a reference image were used for accuracy analysis. Approximately 69% of the image has a positional accuracy of less than 3m(RMSE). We found that the seam-line accuracy among neighboring image was very high through visual inspection. However, there were a discrepancy with 1 to 2 pixels at some mountainous regions.

Development of Mobile Active Transponder for KOMPSAT-5 SAR Image Calibration and Validation (다목적실용위성 5호의 SAR 영상 검·보정을 위한 이동형 능동 트랜스폰더 개발)

  • Park, Durk-Jong;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1128-1139
    • /
    • 2013
  • KOMPSAT-5(KOrea Multi-Purpose SATellite-5) has a benefit of continuously conducting its mission in all weather and even night by loading SAR(Synthetic Aperture Radar) payload, which is different from optical sensor of KOMPSAT-2 satellite. During IOT(In-Orbit Test) periods, SAR image calibration should be conducted through ground target of which location and RCS is pre-determined. Differently from the conventional corner reflector, active transponder has a capability to change its internal transfer gain and delay, which allows active transponder to be shown in a pixel of SAR image with very high radiance and virtual location. In this paper, the development of active transponder is presented from design to I&T(Integration and Test).

Improvement of KOMPSAT-5 Image Resolution for Target Analysis (객체 분석을 위한 KOMPSAT-5 영상의 해상도 향상 성능 분석)

  • Lee, Seung-Jae;Chae, Tae-Byeong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.4
    • /
    • pp.275-281
    • /
    • 2019
  • A synthetic aperture radar(SAR) satellite is more effective than an optical satellite for target analysis because an SAR satellite can provide two-dimensional electromagnetic scattering distribution of a target during all-weather and day-and-night operations. To conduct target analysis while considering the earth observation interval of an SAR satellite, observing a specific area as wide as possible would be advantageous. However, wider the observation area, worse is the resolution of the associated SAR satellite image. Although conventional methods for improving the resolution of radar images can be employed for addressing this issue, few studies have been conducted for improving the resolution of SAR satellite images and analyzing the performance. Hence, in this study, the applicability of conventional methods to SAR satellite images is investigated. SAR target detection was first applied to Korea Multipurpose Satellite-5(KOMPSAT-5) SAR images provided by Korea Aerospace Research Institute for extracting target responses. Extrapolation, RELAX, and MUSIC algorithms were subsequently applied to the target responses for improving the resolution, and the corresponding performance was thereby analyzed.

Accuracy Evaluation of Terrain Correction of High Resolution SAR Imagery with the Quality of DEM (DEM 품질에 따른 고해상도 SAR 영상의 지형 보정 정확도 평가)

  • Lee, Kyung Yup;Byun, Young Gi;Kim, Youn Soo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_1
    • /
    • pp.519-528
    • /
    • 2012
  • It was pointed out that the terrain distortion of SAR image is even worse than that of optical image although SAR imagery has the advantages of being independent of solar illumination and weather conditions. It is thus necessary to correct terrain distortion in SAR image for various application areas to integrate SAR and optical image information. There has to be a clear evaluation of terrain correction of high resolution SAR image according to the quality of DEM because the DEM of study site is generally used in the process of terrain correction. To achieve this issue, this paper compared the effects of quality of Digital Elevation Model(DEM) in the process of terrain correction of high resolution SAR images, using the DEM produced from 1:5000 topographic contour maps, LiDAR DEM, ASTER GDEM, SRTM DEM. We used TerraSAR-X and Cosmo-SkyMed, as the test data set, which are constructed on the same X-band SAR system as KOMPSAT-5. In order to evaluate quantitatively the correction results, we conducted comparative evaluation with the KOMPSAT-2 ortho image of the same region. The evaluation results showed that the DEM produced from 1:5000 topographic contour maps achieved successful results in the terrain correction of SAR image compared with the other DEM data, and the widely used SRTM DEM data in various applications was not suitable for the terrain correction of high resolution SAR images.

Iterative Precision Geometric Correction for High-Resolution Satellite Images (고해상도 위성영상의 반복 정밀 기하보정)

  • Son, Jong-Hwan;Yoon, Wansang;Kim, Taejung;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.431-447
    • /
    • 2021
  • Recently, the use of high-resolution satellites is increasing in many areas. In order to supply useful satellite images stably, it is necessary to establish automatic precision geometric correction technic. Geometric correction is the process that corrected geometric errors of satellite imagery based on the GCP (Ground Control Point), which is correspondence point between accurate ground coordinates and image coordinates. Therefore, in the automatic geometric correction process, it is the key to acquire high-quality GCPs automatically. In this paper, we proposed iterative precision geometry correction method. we constructed an image pyramid and repeatedly performed GCP chip matching, outlier detection, and precision sensor modeling in each layer of the image pyramid. Through this method, we were able to acquire high-quality GCPs automatically. we then improved the performance of geometric correction of high-resolution satellite images. To analyze the performance of the proposed method, we used KOMPSAT-3 and 3A Level 1R 8 scenes. As a result of the experiment, the proposed method showed the geometric correction accuracy of 1.5 pixels on average and a maximum of 2 pixels.

Estimation of Canopy Cover in Forest Using KOMPSAT-2 Satellite Images (KOMPSAT-2 위성영상을 이용한 산림의 수관 밀도 추정)

  • Chang, An-Jin;Kim, Yong-Min;Kim, Yong-Il;Lee, Byoung-Kil;Eo, Yan-Dam
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.1
    • /
    • pp.83-91
    • /
    • 2012
  • Crown density, which is defined as the proportion of the forest floor concealed by tree crown, is important and useful information in various fields. Previous methods of measuring crown density have estimated crown density by interpreting aerial photographs or through a ground survey. These are time-consuming, labor-intensive, expensive and inconsistent approaches, as they involve a great deal of subjectivity and rely on the experience of the interpreter. In this study, the crown density of a forest in Korea was estimated using KOMPSAT-2 high-resolution satellite images. Using the image segmentation technique and stand information of the digital forest map, the forest area was divided into zones. The crown density for each segment was determined using the discriminant analysis method and the forest ratio method. The results showed that the accuracy of the discriminant analysis method was about 60%, while the accuracy of the forest ratio method was about 85%. The probability of extraction of candidate to update was verified by comparing the result with the digital forest map.

Land Cover Classification of Multi-functional Administrative City for Hazard Mitigation Precaution (행정중심복합도시 재해경감대책을 위한 토지피복분류)

  • Han, Seung-Hee
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.77-83
    • /
    • 2008
  • In this study, land cover classification and NDVI evaluation for hazard mitigation precaution are carried out in surrounding areas of Yeongi-gun, Chungcheongnam-do ($132\;km^2$) where a project for multi-functional administrative city is promoted by government. Image acquired from KOMPSAT 2, LANDSAT and ASTER is utilized and comparative evaluation on limitation in classification based on resolution was carried out. The area mainly consists of arable land including mountains, rice fields, ordinary fields, etc thus special attention was paid to the classification of rice fields and ordinary fields. For the classification of image acquired from KOMPSAT 2, segmentation technique for classification of high-resolution image was applied. To evaluate the accuracy of the classification, field investigation was conducted to examine the sample and it was compared with the land usage and classification of land category in land ledger of Korea. Acquired results were made into theme map in shape file format and it would be of great help in decision making of policy for the future-oriented development plan of multi-functional administrative city.

OSMI를 이용한 달 촬영 가능 시각 결정을 위한 고속 시뮬레이터 개발

  • Kang, Chi-Ho
    • Aerospace Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.132-140
    • /
    • 2002
  • By utilizing OSMI (Ocean Scanning Multi-spectral Imager) onboard KOMPSAT-1, the moon can be imaged. Because the moon has no atmosphere and reflects sun lights at a constant rate, it can be the radiance source for calibration of OSMI. But there are a lot of risks which made KOMPSAT-1 enter into safe-hold mode. So planning the imaging of the moon with OSMI should be determined seriously with consideration to information on KOMPSAT-1 operation, the moon, the sun, etc. But it takes a long time for determining the imaging time of the moon using MCE(Mission Control Element) simulator and there are operational problems to be solved. In this paper, fast simulator for determining imaging time for the moon with OSMI has been developed. The proper timeline for imaging the moon and the position of the moon image in OSMI image coordinates and the phase of the moon are determined. STK was used for acquiring information on KOMPSAT-1, the moon, the sun and the characteristitcs of OSMI are considered. As a result, we can determine imaging time of the moon with OSMI much faster and efficiently.

  • PDF