• Title/Summary/Keyword: Kompsat imagery

Search Result 218, Processing Time 0.028 seconds

3D Geometric Modeling of KOMPSAT-1 Stereo Strip Imagery (KOMPSAT-1입체 스트립 영상의 3차원 기하 모델링)

  • 유환희;손홍규;김성삼;정주권
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.340-348
    • /
    • 2003
  • 비접근지역이나 넓은 지역의 3차원 위치정보를 취득하기 위하여 본 연구에서는 KOMPSAT-1호 EOC 스트립 영상과 헤더자료를 이용한 3차원 기하모델링 기법을 개발하고 오차특성을 분석하였다. ECEF 좌표계로 제공되는 위성 헤더자료를 위성궤도 모델링에서 일반적으로 사용되는 ECI 좌표계로 모델링하는 경우와 ECEF 좌표계로 모델링하는 경우에 대해 비교 분석하고 단영상으로 제공되는 KOMPSAT-1호 EOC 영상을 스트립영상으로 재구성한 후 기준점 배치에 따른 오차보정기법을 제시하고 오차특성을 분석하였다.

  • PDF

KOMPSAT Data Processing System: An Overview and Preliminary Acceptance Test Results

  • Kim, Yong-Seung;Kim, Youn-Soo;Lim, Hyo-Suk;Lee, Dong-Han;Kang, Chi-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.4
    • /
    • pp.357-365
    • /
    • 1999
  • The optical sensors of Electro-Optical Camera (EOC) and Ocean Scanning Multi-spectral Imager (OSMI) aboard the KOrea Multi-Purpose SATellite (KOMPSAT) will be placed in a sun synchronous orbit in late 1999. The EOC and OSMI sensors are expected to produce the land mapping imagery of Korean territory and the ocean color imagery of world oceans, respectively. Utilization of the EOC and OSMI data would encompass the various fields of science and technology such as land mapping, land use and development, flood monitoring, biological oceanography, fishery, and environmental monitoring. Readiness of data support for user community is thus essential to the success of the KOMPSAT program. As a part of testing such readiness prior to the KOMPSAT launch, we have performed the preliminary acceptance test for the KOMPSAT data processing system using the simulated EOC and OSMI data sets. The purpose of this paper is to demonstrate the readiness of the KOMPSAT data processing system, and to help data users understand how the KOMPSAT EOC and OSMI data are processed, archived, and provided. Test results demonstrate that all requirements described in the data processing specification have been met, and that the image integrity is maintained for all products. It is however noted that since the product accuracy is limited by the simulated sensor data, any quantitative assessment of image products can not be made until actual KOMPSAT images will be acquired.

Vegetation Classification using KOMPSAT-2 Imagery and High-resolution airborne imagery in Urban Area (KOMPSAT-2 영상 및 고해상도 항공영상을 이용한 도심지역 식생분류)

  • Park, Jeong Gi;Go, Shin Young;Cho, Gi Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.21-27
    • /
    • 2013
  • Recently, It is increasing that importance of systematic management by carbon sinks in forest resources. Especially, in terms of social, Forest resources in urban areas are important role as well as carbon sinks, and improvement of the natural environment of the city. In this study, through ANOVA analysis that a total of nine different vegetation index from rearranged NIR band of images to Forest tree species classified in urban areas using high-resolution aerial images and satellite images of KOMPSAT-2. And various vegetation indices such as NDVI are divided a species by forest units through statistical analysis. Also, separated species are compared to forest type map by the Forest Service. As a result, it is built as basis for vegetation management in urban areas.

Geolocation Error Analysis of KOMPSAT-5 SAR Imagery Using Monte-Carlo Simulation Method

  • Choi, Yoon Jo;Hong, Seung Hwan;Sohn, Hong Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.2
    • /
    • pp.71-79
    • /
    • 2019
  • Geolocation accuracy is one of the important factors in utilizing all weather available SAR satellite imagery. In this study, an error budget analysis was performed on key variables affecting on geolocation accuracy by generating KOMPSAT-5 simulation data. To perform the analysis, a Range-Doppler model was applied as a geometric model of the SAR imagery. The results show that the geolocation errors in satellite position and velocity are linearly related to the biases in the azimuth and range direction. With 0.03cm/s satellite velocity biases, the simulated errors were up to 0.054 pixels and 0.0047 pixels in the azimuth and range direction, and it implies that the geolocation accuracy is sensitive in the azimuth direction. Moreover, while the clock drift causes a geolocation error in the azimuth direction, a signal delay causes in the range direction. Monte-Carlo simulation analysis was performed to analyze the influence of multiple geometric error sources, and the simulated error was up to 3.02 pixels in the azimuth direction.

RADIOMETRIC RESTORATION OF SHADOW AREAS FROM KOMPSAT-2 IMAGERY

  • Choi, Jae-Wan;Kim, Hye-Jin;Han, You-Kyung;Kim, Yong-II
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.371-374
    • /
    • 2008
  • In very high-spatial resolution remote sensing imagery, it is difficult to extract the feature information of various objects because of occlusion and shadows. Moreover, various and feeble information within shadows can be of use in GIS-based applications and remote sensing analysis. In this paper, we developed a radiometric restoration method for shadow areas using KOMPSAT-2 satellite image. After detecting the shadow, non-shadow pixels nearby are extracted using a morphological filter. An iterative linear regression method is applied to calculate the relationship between shadow and non-shadow pixels. The shadows are restored by the parameters of the linear regression algorithm. Tests show that recovery of shadowed areas by our method leads to improved image quality.

  • PDF

3D BUILDING INFORMATION EXTRACTION FROM A SINGLE QUICKBIRD IMAGE

  • Kim, Hye-Jin;Han, Dong-Yeob;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.409-412
    • /
    • 2006
  • Today's commercial high resolution satellite imagery such as IKONOS and QuickBird, offers the potential to extract useful spatial information for geographical database construction and GIS applications. Recognizing this potential use of high resolution satellite imagery, KARI is performing a project for developing Korea multipurpose satellite 3(KOMPSAT-3). Therefore, it is necessary to develop techniques for various GIS applications of KOMPSAT-3, using similar high resolution satellite imagery. As fundamental studies for this purpose, we focused on the extraction of 3D spatial information and the update of existing GIS data from QuickBird imagery. This paper examines the scheme for rectification of high resolution image, and suggests the convenient semi-automatic algorithm for extraction of 3D building information from a single image. The algorithm is based on triangular vector structure that consists of a building bottom point, its corresponding roof point and a shadow end point. The proposed method could increase the number of measurable building, and enhance the digitizing accuracy and the computation efficiency.

  • PDF

Automatic Extraction of Road Network using GDPA (Gradient Direction Profile Algorithm) for Transportation Geographic Analysis

  • Lee, Ki-won;Yu, Young-Chul
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.775-779
    • /
    • 2002
  • Currently, high-resolution satellite imagery such as KOMPSAT and IKONOS has been tentatively utilized to various types of urban engineering problems such as transportation planning, site planning, and utility management. This approach aims at software development and followed applications of remotely sensed imagery to transportation geographic analysis. At first, GDPA (Gradient Direction Profile Algorithm) and main modules in it are overviewed, and newly implemented results under MS visual programming environment are presented with main user interface, input imagery processing, and internal processing steps. Using this software, road network are automatically generated. Furthermore, this road network is used to transportation geographic analysis such as gamma index and road pattern estimation. While, this result, being produced to do-facto format of ESRI-shapefile, is used to several types of road layers to urban/transportation planning problems. In this study, road network using KOMPSAT EOC imagery and IKONOS imagery are directly compared to multiple road layers with NGI digital map with geo-coordinates, as ground truth; furthermore, accuracy evaluation is also carried out through method of computation of commission and omission error at some target area. Conclusively, the results processed in this study is thought to be one of useful cases for further researches and local government application regarding transportation geographic analysis using remotely sensed data sets.

  • PDF

Applications of MSC Pan Nuc for RAdiometric Cal/Val of KOMPSAT-2 (KOMPSAT-2 검보정을 위한 MSC Pan에 대한 NUC 적용과 결과 분석)

  • Song, Jeong-Heon;Seo, Du-Cheon;Lee, Dong-Han;Lim, Hyo-Suk
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.209-212
    • /
    • 2007
  • In the NUC of KOMPSAT-2, The NUC table for each pixel are divided as HF NUC(high frequency NUC) and LF NUC (low frequency NUC) to apply to few restricted facts in the operating system of KOMPSAT-2. This work presents the algorithm and process of NUC table generation and shows the imagery to compare with and without calibration.

  • PDF

Monitoring of Graveyards in Mountainous Areas with Simulated KOMPSAT-2 imagery

  • Chang, Eun-Mi;Kim, Min-Ho;Lee, Byung-Whan;Heo, Min
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1409-1411
    • /
    • 2003
  • The application of simulated KOMPSAT-2 imagery to monitor graveyards is to be developed. Positions calculated from image were compared with those obtained from Geographic Positioning System. With 24 checkpoints, the position of graveyards showed within 5-meter range. Unsupervised classification, supervised classification, and objected-orientation classification algorithms were used to extract the graveyard. Unsupervised classification with masking processes based on National topographic data gives the best result. The graveyards were categorized with four types in field studies while the two types of graveyards were shown in descriptive statistics. Cluster Analysis and discriminant analysis showed the consistency with two types of tombs. It was hard to get a specific spectral signature of graveyards, as they are covered with grasses at different levels and shaded from the surrounding trees. The slopes and aspects of location of graveyards did not make any difference in the spectral signatures. This study gives the basic spectral characteristics for further development of objected-oriented classification algorithms and plausibility of KOMPSAT-2 images for management of mountainous areas in the aspect of position accuracy and classification accuracy.

  • PDF

Standardizing Agriculture-related Land Cover Classification Scheme using IKONOS Satellite Imagery (IKONOS 영상자료를 이용한 농업지역 토지피복 분류기준 설정)

  • Hong Seong-Min;Jung In-Kyun;Kim Seong-Joon
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.4
    • /
    • pp.253-259
    • /
    • 2004
  • The purpose of this study is to present a standardized scheme for providing agriculture-related information at various spatial resolutions of satellite images including Landsat + ETM, KOMPSAT-1 EOC, ASTER VNIR, and IKONOS panchromatic and multi-spectral images. The satellite images were interpreted especially for identifying agricultural areas, crop types, agricultural facilities and structures. The results were compared with the land cover/land use classification system suggested by National Geographic Information based on aerial photograph and Ministry of Environment based on satellite remote sensing data. As a result, high-resolution agricultural land cover map from IKONOS imageries was made out. The classification result by IKONOS image will be provided to KOMPSAT-2 project for agricultural application.